Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-07T21:24:35.300Z Has data issue: false hasContentIssue false

Rational Design of Highly Filled Reactive Resins for Electronic Material Applications with Multiple Performance Constraints

Published online by Cambridge University Press:  26 February 2011

Daniel J Duffy
Affiliation:
[email protected], National Starch & Chemical Company, Corporate Research, 10 Finderne Ave., Bridgewater, NJ, 08807, United States, (908) 685-5267, (908) 685-7400
Allison Xiao
Affiliation:
[email protected], National Starch & Chemical Company, 10 Finderne Ave., Bridgewater, NJ, 08807, United States
Get access

Abstract

Cyanate ester resin and its blends with epoxy resin demonstrate a lower viscosity build up when filled with thermally treated silica fillers than with untreated silica fillers. The reduced viscosity build up resulting from the use of the thermally treated materials results in faster capillary flow rates by a factor of 2 to 5 with respect to untreated silica particles. Surface properties of the filler materials are used to interpret the viscosity and flow rate data and guide design of filler surface properties. The flow rate performance improvement contributes to design of new capillary underfill materials for electronic materials applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Goldmann, L.S., Howard, R.T., Jeannotte, D.A. in Microelectronics Packaging Handbook: Technology Drivers Part 1 2nd Edition, Tummala, R.R, Rymaszewski, E.J., Klopfenstein, A.G. (Eds.). pp 404555, Chapman & Hall, New York, 1997 Google Scholar
2. Wan, J.W., Zhang, W.J., Bergstrom, D.J., Microelectron. J., 36(8), 687 (2005) & IEEE Trans. Adv. Packag., 28(3), 481 (2005)Google Scholar
3. Islam, M.S., Suhling, J.C., Lall, P., IEEE Trans. Compon. Packaging Technol., 28(3), 467 (2005)Google Scholar
4. Wang, J.L., Microelectron. Reliab., 42(2), 293 (2002)Google Scholar
5. Young, W.B., Yang, W.L., IEEE Trans. Adv. Packag., 29(3), 647 (2006)Google Scholar
6. Xiao, Y., J. Colloid Interface Sci., 298(2), 880 (2006)Google Scholar
7. Otsubo, Y., J. Colloid Int. Sci., 112(2), 380 (1986)Google Scholar
8. Lozano, T., Can. J. Chem. Engr., 80, 1135 (2002)Google Scholar
9. Holysz, L., Colloid Surf. A-Physicochem. Eng. Asp., 134(3), 321 (1998)Google Scholar
10. Markowitz, M.A., Colloid Surf. A-Physicochem. Eng. Asp., 150, 85 (1999)Google Scholar
11. Liu, C.H.C., J. Am. Chem. Soc., 118, 5103 (1996)Google Scholar
12. Gallas, J.P., LaValley, J.C., Burneau, A., Barres, O., Langmuir, 7(6), 1235 (1991)Google Scholar
13. Tuel, A., Hommel, H., LeGrand, A.P., Kovats, E.S., Langmuir, 6(4), 770 (1990)Google Scholar
14. Lu, G., Purvis, K.L., Schwartz, J., Bernasek, S., Langmuir, 13(22), 5791 (1997)Google Scholar
15. Nalaskowski, J., Langmuir, 19(13), 5311 (2003)Google Scholar
16. Chen, J.S., Langmuir, 13(7), 2050 (1997)Google Scholar
17. Fuji, M., Langmuir, 15(13), 4584 (1999)Google Scholar
18. Garcia-Santamaria, F., Langmuir, 18(5), 1942 (2002)Google Scholar
19. Mooney, M., J. Colloid Sci., 6, 162 (1951)Google Scholar
20. Salvena, C., SPIE, 3045, 2, (1997)Google Scholar
21. Brilliantov, N., Phys. Rev. E., 67, 061304 (2003)Google Scholar
22. Adamson, A.W., Physical Chemistry of Surfaces 5th Edition, (Ch. 1, 3, 10), John Wiley & Sons, New York, 1990 Google Scholar
23. Good, R.J., van Oss, C.J., in Modern Approaches to Wettability Theory and Applications, Schrader, M.E., Loeb, G.I. (Eds.), pp. 128, Plenum Press, New York, 1992 Google Scholar
24. Velope, C.D., Siboni, S., in Acid-Base Interactions: Relevance to Adhesion Science and Technology Volume 2, Mittal, K.L. (Ed.), pp. 5590, VSP Utrecht, 2000 Google Scholar