No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
We develop a rate-equation model for ion beam assisted homoepitaxy. The model describes how island diffusion, detachment and breakup, generation of surface damage and interlayer transitions of adatoms and monovacancies affect the growth. We simulate the (100) and (110) surfaces of silver and the (100) surface of copper using potential energy barriers calculated using either surface embedded atom method (SEAM) or the effective medium theory (EMT). We study how the choice of the potential barriers affects the growth and comment on the suitability of SEAM and EMT for calculating barriers for surface simulation. We demonstrate how different processes affect the microstructure of the film, compare the growth on different surfaces and study the scaling properties of the results.