No CrossRef data available.
Published online by Cambridge University Press: 14 July 2014
Molecules such as dithiols are of significant interest for potential molecular electronics applications. To investigate their properties, an efficient method for measuring their electrical conductance is crucial. This research focuses on the time domain measurement, a novel technique capable of measuring hundreds of molecules within a matter of seconds. Measurements were conducted using STM with the tip positioned within tunneling distance over a SAM of 1,8-octanedithiol on Au(111)-mica substrate submerged in toluene. Bonding/debonding events between the tops of molecules and the tip were observed through jumps in the time domain current waveform. A new time-spent histogram data analysis technique was developed to extract conductance values from complex waveforms. Conductance of 2.6 nS was obtained for a single 1,8-octanedithiol molecule, consistent with results obtained from wellestablished but time consuming break junction technique, validating the new STM based time domain technique for fast measurement of molecular conductance.