Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T05:38:44.463Z Has data issue: false hasContentIssue false

Rapid Thermal-Pulsed Diffusion of Zn into GaAs

Published online by Cambridge University Press:  25 February 2011

S.K. Tiku
Affiliation:
Texas Instruments Inc., P.O. Box 225936, M/S 134, Dallas, TX 75265
J.B. Delaney
Affiliation:
Texas Instruments Inc., P.O. Box 225936, M/S 134, Dallas, TX 75265
N.S. Gabriel
Affiliation:
Texas Instruments Inc., P.O. Box 225936, M/S 134, Dallas, TX 75265
H.T. Yuan
Affiliation:
Texas Instruments Inc., P.O. Box 225936, M/S 134, Dallas, TX 75265
Get access

Abstract

A rapid thermal process for the diffusion of Zn into GaAs has been developed to fulfill the need for highly doped p type layers in GaAs technology. The process uses a solid Zn:Si:O source layer and a quartz-halogen lamp system for the thermal drive-in. Surface concentrations of the order of 1020/cm3 have been achieved with good depth reproducibility and low lateral diffusion. Specific contact resistance of Au:Zn/Au alloyed contacts fabricated using this process was in the 10−7 ohm-cm2 range.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Colliver, D.J., COMPOUND SEMICONDUCTOR TECHNOLOG-Y Artech House Inc., (1976) p. 57.Google Scholar
2. Ghandhi, S.K., VLSl FABRICATION PRINCIPLES John Wiley and Sons, N.Y., (1983.) p. 185.Google Scholar
3. Ghandhi, S.K. and Field, R.J., Applied Physics Letters, 38, 267, (1981).Google Scholar
4. van Gurp, G.J., van Ommen, A.H., Boudewijn, P.R., Oosthoek, D.P. and Willemsen, M.F.C., J. Appl. Phys., 55, 338 1984).Google Scholar
5. Davies, D.E., Ryan, T.G. and Lorenzo, J.P., Appl. Phys. Lett., 37, 443 (1980).Google Scholar
6. Greiner, M.E. and Gibbons, J.F., Appl. Phys. Lett., 44, 750 (1984).Google Scholar
7. Blaauw, C., SpringThorpe, A.J., Dzioba, S. and Emmerstorfer, B., J. Electronic Mater., 13, 251 (9184).Google Scholar
8. Ghandhi, S.K., VLSL Fabrication Principles John Wiley and Sons, N.Y., (1983.)p. 195 Google Scholar