Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T09:22:58.311Z Has data issue: false hasContentIssue false

Rapid Thermal Process Integration

Published online by Cambridge University Press:  25 February 2011

I.D. Calder
Affiliation:
Advanced Processing Techniques, Northern Telecom Electronics, P.O. Box 3511, Station C, Ottawa, Ontario, Canada, K1Y 4H7
A.A. Naem
Affiliation:
Advanced Processing Techniques, Northern Telecom Electronics, P.O. Box 3511, Station C, Ottawa, Ontario, Canada, K1Y 4H7
Get access

Abstract

A manufacturable process must be designed with device integrity and reliability in mind. The optimum cumulative thermal budget should be chosen to achieve a shallow junction (for performance optimization) while minimizing junction leakage. At the same time the processing must satisfy reliability requirements such as good metal step coverage and oxide integrity. Interactions between thermal processes create problems such as repeated anneals, chemical reactions, pattern shifts, and non-equilibrium conditions, as well as opportunities for process simplification, such as greater flexibility in anneal and silicidation processes. In general RTP integration requires a redesign of the complete process sequence.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nulman, J., Krusius, J.P., and Gat, A., IEEE Electron Dev. Lett. EDL–6, 205 (1985).Google Scholar
2. Moslehi, M.M., Mater. Res. Soc. Proc. 92, pp. 7387 (1987).CrossRefGoogle Scholar
3. Seidel, T.E., Pai, C.S., Lischner, D.J., Maher, D.M., Knoell, R.V., Williams, J.S., Penumalli, B.R., and Jacobson, D.C., Mater. Res. Soc. Proc. 35, pp. 329340 (1985).Google Scholar
4. Calder, I.D., Naguib, H.M., Houghton, D., and Shepherd, F.R., Mater. Res. Soc. Proc., pp. 353358.Google Scholar
5. Naem, A.A. and Calder, I.D., J. Appl. Phys. 62, 569 1987.CrossRefGoogle Scholar
6. Murarka, S.P., Silicides for VLSI Application (Academic Press, N.Y. 1983).Google Scholar
7. Ku, Y.H., Lee, S.K., Louis, E., Shih, D.K., and Kwong, D.L., Mater. Res. Soc. Proc. 92, pp. 155164 (1987).Google Scholar
8. Mercier, J.S., Solid State Technol. 30 (7), 8591 (1987); and J.S. Mercier, L.D. Madsen, and I.D. Calder, Mater. Res. Soc. Proc. 52, pp. 251-258 (1986).Google Scholar
9. Madsen, L.D. and Mercier, J.S., to be published in Can. J. Phys. xxx (1988).Google Scholar
10. Reed, M.L., Fishbein, B., and Plummer, J.D., Appl. Phys. Lett. 47, 40 1985.CrossRefGoogle Scholar
11. Sedgwick, T.O., Mater. Res. Soc. Proc. 92, pp. 314 (1987).CrossRefGoogle Scholar
12. Fulks, R.T., Mater. Res. Soc. Proc. 92, pp. 249257.CrossRefGoogle Scholar
13. Singh, R., J. Appl. Phys. 63 (8), R59 (1988).Google Scholar
14. Box, G.E.P. and Draper, N.R., EmpRirical Model-Building and Response Surfaces (John Wiley, New York, 1987).Google Scholar
15. Kamgar, A., Fichtner, W., Sheng, T.T., and Jacobson, D.C., Appl. Phys. Lett, A5, 754 1984.CrossRefGoogle Scholar
16. Butler, A.L., Foster, D.J., and Pickering, A.J., Mater. Res. Soc. Proc. 71, pp. 417422 (1986).CrossRefGoogle Scholar
17. Finn, M.A. and Coe, M.E., Electrochem. Soc. Ext. Abstr. 85 (2), 374 (1985).Google Scholar
18. Felch, S.B., Hodul, D. T., and Salimian, M., Mater. Res. Soc. Proc. 92, pp. 235239 (1987).Google Scholar
19. McGruer, N.E. and Oikari, R.A., IEEE Trans. Electron Dev. ED–33, 929 1986.CrossRefGoogle Scholar
20. Lee, S.K., Kwong, D.L., and Alvi, N.S., J. Appl. Phys. 60, 3360 1986.Google Scholar
21. Cosway, R.G. and Hodel, M.W., J. Electrochem. Soc. 135, 533 1988.CrossRefGoogle Scholar
22. Onishi, S., Nishizawa, K., and Sakiyama, K., Proc. Spring Meet. Jpn. Appi. Phys. Soc., p. 484 (1987).Google Scholar
23. Hara, T., Suzuki, H., and Furukawa, M., Jpn. J. Appl. Phys. 23, L452 (1984).CrossRefGoogle Scholar
24. Mercier, J.S., Calder, I.D., Beerkens, R.P., and Naguib, H.M., J. Electrochem Soc. 132, 2432 1985.Google Scholar
25. Alvi, N.S. and Kwong, D.L., J. Electrochem. Soc. 133, 2626 1986.Google Scholar
26. Barsony, I., Anzai, H., and Nishizawa, J.-I., J.Electrochem.Soc. 133, 157 1986.CrossRefGoogle Scholar
27. Levy, R.A. and Nassau, K., J. Electrochem. Soc. 133, 1417 1986.Google Scholar
28. Pennycook, S.J. and Culbertson, R.J., Proc. SPIE 797, (1987); and Mater. Res. Soc. Proc. 74, pp. 379-384 (1987).Google Scholar
29. Michel, A.E., Mater. Res. Soc. Proc. 52, pp. 313 (1986).Google Scholar
30. Sedgwick, T.O., Michel, A.E., Deline, V.R., Cohen, S.A., and Lasky, J.B., J. Appl. Phys. 63, 1452 1988.Google Scholar
31. Wilson, S.R., Gregory, R.B., Paulson, W.M., Krause, S.J., Leavitt, J.A., McIntyre, L.C. Jr., Seerveld, J.L., and Stoss, P., Appl. Phys. Lett. 49, 660 1986.Google Scholar
32. Current, M. and Yee, A., Solid State Technol. 26 (10), 197202 (1983).Google Scholar
33. Blake, J., Gelpey, J.C., Moquin, J.F., Schlueter, J., and Capodilupo, R., Mater. Res. Soc. Proc. 92, pp. 265272 (1987).Google Scholar
34. Tsukamoto, K., Okamoto, T., Shimizu, M., Matsukawa, T., and Nakata, H., IEDM Tech, Dig. 84, p. 130(1984).Google Scholar
35. Ho, V.Q. and Poulin, D., J. Vac. Sci. Technol. A5, 1396 1987.Google Scholar
36. Scott, D.B., Chapman, R.A., Wei, C.-C., Mahant-Shetti, S.S., Haken, R.A., and Holloway, T.C., IEEE Trans. Electron Dev. ED–34, 562 1987.Google Scholar
37. Beyers, R., J. Appl. Phys. 56, 147 1984.CrossRefGoogle Scholar
38. Morgan, A.E., Broadbent, E.K., Ritz, K.N., Sadana, D.K., and Burrow, B.J., J. Appl. Phys. 64, 344 1988.Google Scholar
39. Natan, M., Mater. Res. Soc. Proc. 74, pp. 679684 (1987).Google Scholar
40. Brillson, L.J., Slade, M.L., Richter, H.W., Plas, H. Vander, and Fulks, R.T., Appl. Phys. Lett. 47, 1080 1985.CrossRefGoogle Scholar
41. Delfino, M., Morgan, A.E., Broadbent, E.K., Maillot, P., and Sadana, D.K., J. Appl. Phys. 62, 1882 1987.Google Scholar
42. Chow, T.P., Katz, W., and Smith, G., Appl. Phys. Lett. 46, 41 1985.Google Scholar
43. Matsui, H., Ohtsuki, H., Ino, M., and Ushio, S., Mater. Res. Soc. Symp. 54, pp. 769774 (1986).CrossRefGoogle Scholar
44. Sun, S.W., Pintchovski, F., Tobin, P.J., and Hance, R.L., Mater. Res. Soc. Proc. 92, pp. 165170 (1987).CrossRefGoogle Scholar
45. Ponpon, J.P., Saulnier, A., and Stuck, R., Appl. Phys. A44, 227 1987.Google Scholar
46. Pasa, A.A., Souza, J.P. de, Baumvol, I.J.R., and Freire, F.L. Jr., J. Appl. Phys. 61, 1228 1987.Google Scholar
47. Beyers, R., Sinclair, R., and Thomas, M.E., J. Vac. Sci. Technol. B2, 781 1984.CrossRefGoogle Scholar
48. Rosser, P.J. and Tomkins, G.J., Mater. Res. Soc. Proc. 35, pp. 457463 (1985).Google Scholar
49. Morgan, A.E., Broadbent, E.K., and Reader, A.H., Mater. Res. Soc. Proc. 52, pp. 279287 (1986).Google Scholar
50. Cohen, B. and Nulman, J., Mater. Res. Soc. Proc. 92, pp. 171176 (1987).Google Scholar
51. Tang, T., Wei, C.-C., Haken, R., Holloway, T., Wan, C.-F., and Douglas, M., IEDM Tech. Dig. 85, p. 590 (1985).Google Scholar
52. Tsang, P.J., Ogura, S., Walker, W.W., Shepard, J.F., and Critchlow, D.L., IEEE Trans. Electron Dev. ED–29, 590 1982.Google Scholar
53. Horiuchi, M. and Yamaguchi, K., Solid-State Electron. 28, 465 1985.Google Scholar
54. Huang, H.-C. W., Cook, R., Campbell, D.R., Ronsheim, P., Rausch, W., and Cunningham, B., J. Appl. Phys. 63, 1111 1988.Google Scholar
55. Ohdomari, I., Konuma, K., Takano, M., Chikyow, T., Kawarda, H., Nakanishi, J., and Ueno, T., Mater. Res. Soc. Proc. 54, pp. 6372 (1986).Google Scholar
56. Wittmer, M., Psaras, P.A., and Tu, K.N., Mater. Res. Soc. Proc. 54, pp. 7377 (1986).Google Scholar
57. Ishiwara, H. and Horita, S., Jpn. J. Appl. Phys. 24, 568 1985.Google Scholar
58. Miyake, M., Aoyama, S., Hirota, S., and Kobayashi, T., J. Electrochem. Soc. 135, 2872 1988.Google Scholar
59. Ozturk, M.C., Wortman, J.J., Osburn, C.M., Ajmera, A., Rozgonyi, G.A., Frey, E., Chu, W.-K., and Lee, C., IEEE Trans. Electron Dev. 35, 659 1988.Google Scholar
60. Seidel, T.E., IEEE Electron Dev. Lett. ED–4, 353 1983.Google Scholar
61. Carter, C., Maszara, W., Sadana, D.K., Rozgonyi, G.A., Liu, J., and Wortman, J., Appl. Phys. Lett. 44, 459 1984.Google Scholar
62. Yoshida, T., Fukumoto, M., and Ohzone, T., J. Electrochem. Soc. 135, 481 1988.Google Scholar
63. Sadana, D.K., Myers, E., Liu, J., Finstead, T., and Rozgonyi, G.A., Mater. Res. Soc. Proc. 23, pp. 303308 (1983).Google Scholar
64. Broadbent, E.K., Delfino, M., Morgan, A.E., Sadana, D.K., and Maillot, P., IEEE Electron Dev. Lett. EDL–8, 318 1987.Google Scholar
65. Wen, D.S., Smith, P.L., Osburn, C.M., and Rozgonyi, G.A., Appl. Phys. Lett. 51, 1182 1987.CrossRefGoogle Scholar
66. Horiuchi, M. and Yamaguchi, K., IEEE Trans. Electron Dev. ED–33, 260 1986.Google Scholar
67. Cao, D.X., Harrison, H.B., and Reeves, G.K., Mater. Res. Soc. Symp. 100, pp. 737741 (1987).CrossRefGoogle Scholar
68. Probst, V., Schaber, H., Lippens, P., Hove, L. Van den, and Keersmaecker, R. De, Appl. Phys. Lett. 52, 1803 1988.Google Scholar