Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T07:24:56.375Z Has data issue: false hasContentIssue false

Rapid Thermal Low Pressure Metalorganic Chemical Vapor Deposition of InP and Related Materials

Published online by Cambridge University Press:  22 February 2011

A. Katz
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
A. Feingold
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

High quality InP and In0.53Ga0.67As undoped and Zn-doped layers were grown by means of rapid thermal low pressure metalorganic chemical vapor deposition (RTLPMOCVD) technique, using tertiarybutylphosphine (TBP) and tertiarybutylarsine (TBA), as the phosphorus and arsenic sources. The InP films were grown at a P:In ratios of about 75 and the InGaAs films were grown at a As:In ration of about 2, low temperatures at the range of 450-550°C, pressures it the range of 1-4 tons, and growth rates of 2-3 nm/sec. All the film growth conditions were optimized to yield defect-free layers with featureless morphology, which reflected at a minimum backscattering yield (Xmin) as low as 3.1% for the InP and 3.6% for the InGaAs. These films presented a good electrical properties, as well, with hole mobility of 4200 cm2/Vs for the undoped-InP layers and 75 cm2/Vs for the undoped-InGaAs layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kellert, F. G., Whelan, J. S. and Chan, K. T., J. Electron. Mater. 18, 355 (1989).Google Scholar
2. Takeda, Y., Araki, S., Noda, S., and Sasaki, A., Japan. J. Appl. Phys. 29, 11 (1990).Google Scholar
3. Miller, B. I., Young, M. G., Oron, M., Koren, V., and Kisker, D., Appl. Phys. Lett. 56, 1439 (1990).Google Scholar
4. Agazzaden, A., Memet, R., Gao, Y., Kazmierski, C., Robein, D., and Mircea, A., Electron. Lett. 27, 1005 (1991).Google Scholar
5. Horita, M., Suzuki, M., and Matsushima, Y., J. Crystal Growth 124, 123 (1992).Google Scholar
6. Reynolds, S., Vook, D. W., and Gibbons, J. F., Appl. Phys. Lett. 49, 1720 (1986).Google Scholar
7. Gibbons, J. F., Gronet, C. M., and Williams, K. E., Appl. Phys. Lett. 47, 721 (1985).Google Scholar
8. Katz, A., Feingold, A., Pearton, S. J., Chakrabarti, U. K., and Lee, K. M., Semicon. Sci. Technol. 7, 583 (1992).Google Scholar
9. Katz, A., Feingold, A., Pearton, S. J., and Chakrabarti, U. K., Appl. Phys. Lett. 59, 579 (1991).Google Scholar
10. Katz, A., Feingold, A. Nakahara, S., Lane, E., Geva, M., Pearton, S. J., Stevie, F. A., and Jones, K., J. Appl. Phys. 71, 993 (1992).Google Scholar
11. Katz, A., Feingold, A., Pearton, S. I., Geva, M., and Lane, E., J. Electronic Materials 20, 1069 (1991).Google Scholar
12. Horita, M., Suzuki, M., and Matsushima, Y., Appl. Phys. Lett. 62, 882 (1993).Google Scholar
13. Bhat, R., Koza, M. A., Hwang, D. M., Brasil, M. J. S. P., Nahory, R. E., and Oe, K., J. Crystal Growth, 1246, 311 (1992).Google Scholar
14. Keller, F. G., Whalen, J. S., and Chan, K. T., J. Electron. Mater. 18, 355 (1989).Google Scholar
15. Katz, A., Feingold, A., Moriya, N., Nakahara, S., Abernathy, C. R., Pearton, S. J., and El-Roy, A., Geva, M., Baiocchi, F. A., Luther, L. C., and Lane, E., Appl. Phys. Lett., to be published.Google Scholar
16. Katz, A., Feingold, A., Nakahara, S., Pearton, S. J., Moriya, N., Baiocchi, C. J., and Geva, M., Appl. Phys. Lett., to be published.Google Scholar