Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T23:21:57.628Z Has data issue: false hasContentIssue false

Rapid Thermal Dopants Diffusion and Surface Passivation for Silicon Solar Cells Applications

Published online by Cambridge University Press:  10 February 2011

Abdelilah Slaoui
Affiliation:
Laboratoire PHASE, 23 Rue du Loess, F-67037 STRASBOURG, FRANCE
Aziz Lachiq
Affiliation:
Laboratoire PHASE, 23 Rue du Loess, F-67037 STRASBOURG, FRANCE
Laurent Ventura
Affiliation:
Laboratoire PHASE, 23 Rue du Loess, F-67037 STRASBOURG, FRANCE
Jean Claude Muller
Affiliation:
Laboratoire PHASE, 23 Rue du Loess, F-67037 STRASBOURG, FRANCE
Get access

Abstract

Limiting thermal exposure time using Rapid Thermal Processing (RTP) is now emerging as a promising simplified process for manufacturing of terrestrial solar cells in a continuous way. In this work, we present results on simultaneous formation of emitter, back-surface field and surface passivation in a single rapid thermal cycle. Spin-on dopants (SOD) solutions are used as dopant sources. Optimal emitter profiles, low sheet resistances and high gettering effect are reached. The residual SOD film is used as a surface passivation layer. Solar cells with efficiencies in the range 10 – 14 % are obtained depending on temperature and time processing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Slaoui, A., Ventura, L., Lachiq, A., Monna, R. and Muller, J.C., in Rapid Thermal and Integrated Processing IV, edited by Sturm, J.C., Gelpey, J.C., Bruek, S.R.J., Kermani, A., Regolini, J.L ( Mat. Res. Soc. Proc. 387, Pittsburg, PA 1995), p365376.Google Scholar
2. Ventura, L., Slaoui, A., Muller, J.C., Siffert, P., Mat. Sci. and Eng. B31, 319 (1995).Google Scholar
3. Geedham, A. M., Goodman, L. A. and Gossenberg, H. F., RCA 44,326 (1983).Google Scholar
4. Aronowitz, S., J. Appl. Phys. 61, 2495 (1987).Google Scholar
5. Grabiec, P.B., Zagozdzon-Wosik, W., and Lux, G., J. Appl. Phys. 78, 204 (1995)Google Scholar
6. Beyer, A., Ebest, G. and Reich, R., Appl. Phys. Lett. 67, 698 (1995).Google Scholar
7. Sparks, D.R., Chapman, R.G., and Alvi, N.S., Appl. Phys. Lett. 49, 525 (1986).Google Scholar
8. Hartiti, B., Quat, V.T., Eichhammer, E., and Muller, J.C.,, Appl. Phys. Lett. 55, 873 (1989)Google Scholar
9. Stolwijk, N.A., Hölzl, H., Frank, W., and Mehrer, H., Phys. Status Solidi A 104, 225 (1987).Google Scholar
10. Kang, J. S and Schroder, D. K., J. Appl. Phys. 65, 2974 (1989).Google Scholar
11. Verhoef, L.A., Michiels, P., Sinke, W.C., Denisse, C.M.M., Hendriks, M. and Zolingen, R.J.C. Van, Appl. Phys. Lett., 57, 2704 (1990).Google Scholar
12. Joshi, S.M., Gösele, U. M. and Tan, T.Y., J. Appl. Phys. 77, 3858 (1995).Google Scholar
13. Kane, D.E. and Swanson, R.M., 18th IEEE PVSEC conf. (IEEE, NY 1985) p.578.Google Scholar