Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T05:32:04.733Z Has data issue: false hasContentIssue false

Rapid Thermal Annealing of Pre-Amorphized B and BF2-Implanted Silicon

Published online by Cambridge University Press:  25 February 2011

I.D. Calder
Affiliation:
Northern Telecom Electronics, Box 3511, Stn. C, Ottawa, Ontario, K1Y 4H7
H.M. Naguib
Affiliation:
Northern Telecom Electronics, Box 3511, Stn. C, Ottawa, Ontario, K1Y 4H7
D. Houghton
Affiliation:
Bell-Northern Research, Box 3511, Stn. C, Ottawa, Ontario, K1Y 4H7
F.R. Shepherd
Affiliation:
Bell-Northern Research, Box 3511, Stn. C, Ottawa, Ontario, K1Y 4H7
Get access

Abstract

Shallow p+n junctions have been formed through a combination of pre-amorphization of the silicon surface by implantation of 28Si, 33Ar, or 73Ge, low energy implantation of boron or BF2+, and rapid thermal annealing (RTA) in a tunqsten halogen lamp system. Both pre-amorphization and RTA are required to form a shallow (<0.25 μm) junction, for either boron or BF2+. Arqon pre-amorphization results in poor electrical activation of the boron, while germanium gives the lowest sheet resistivity, but is responsible for a deep boron tail during implantation. The residual damage is characterized by a plane of dislocation loops centred either close to the boron concentration peak, for B+ implantation into a crystalline substrate, or at the original amorphous-crystalline interface, for pre-amorphized specimens.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] El-mansy, Y., IEEE Trans. Electron Dev. ED–29, 567 (1982).Google Scholar
[2] Maes, H., Vanderworst, W., and van Overstraeten, R., in ”Impurity Processes in Silicon”, ed. by Wang, F.F.Y., Chap. 8 (North-Holland, Amsterdam, 1981).Google Scholar
[3] Liu, T.M and Oldham, W.G, IEEE Electron Dev. Lett. EDL–5, 299 (1984).Google Scholar
[4] Seidel, T.E, IEEE Electron Dev. Lett. EDL–7, 353 (1983).Google Scholar
[5] Sadana, D.K, Myers, E., Liu, J., Finstead, T., and Rozgonyi, G.A, in ”Energy Beam-Solid Interactions and Transient Thermal Processing”, p. 303 (NorthHolland, Amsterdam, 1984).Google Scholar
[6] Shepherd, F.R, Robinson, W.H, Brown, J.D, and Phillips, B.F, J. Vac. Sci. Technol. A1, 991 (1983).Google Scholar
[7] Sedgwick, T.O., Kalish, R., Mader, S.R., and Shatas, S.C., in ”Energy Beam-Solid Interactions and Transient Thermal Processing”, p. 293 (North-Holland, Amsterdam, 1984).Google Scholar
[8] Hodgson, R.T., Deline, V., Mader, S., and Gelpey, J., Appl. Phys. Lett. 44, 589 (1984).Google Scholar
[9] Lasky, J.B, J. Appl. Phys. 54, 6009 (1983).Google Scholar
[10] Carter, C., Maszara, W., Sadana, D.K, Rozgonyi, G.A, Liu, J., and Wortman, J., Appl. Phys. Lett. 44, 459 (1984).Google Scholar
[11] Simard-Normandin, M. and Slaby, C., to be publ. in Can. J. Phys.Google Scholar