Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T17:26:40.275Z Has data issue: false hasContentIssue false

Rapid Migration of Defects in Ion-Implanted Silicon

Published online by Cambridge University Press:  15 February 2011

J. Lalita
Affiliation:
Royal Institute of Technology, Solid State Electronics, P.O. Box E229, S-164 40 Kista-Stockholm, SWEDEN
P. Pellegrino
Affiliation:
Royal Institute of Technology, Solid State Electronics, P.O. Box E229, S-164 40 Kista-Stockholm, SWEDEN
A. Hallén
Affiliation:
Royal Institute of Technology, Solid State Electronics, P.O. Box E229, S-164 40 Kista-Stockholm, SWEDEN
B. G. Svensson
Affiliation:
Royal Institute of Technology, Solid State Electronics, P.O. Box E229, S-164 40 Kista-Stockholm, SWEDEN
N. Keskitalo
Affiliation:
Uppsala University, Department of Electronics, P.O. Box 535, S-751 21 Uppsala, SWEDEN
S. Fatima
Affiliation:
Australian National University, Department of Electronic Materials Engineering, Institute of Advanced Studies, Canberra, ACT 0200, AUSTRALIA
C. Jagadish
Affiliation:
Australian National University, Department of Electronic Materials Engineering, Institute of Advanced Studies, Canberra, ACT 0200, AUSTRALIA
Get access

Abstract

The temperature dependence of the so-called reverse dose rate effect for generation of vacancy-type defects in silicon has been investigated using samples implanted with 1.3 MeV protons at temperatures between 70 and 300 K. The effect is found to involve a thermally controlled process which exhibits an activation energy of ∼0.065 eV, possibly associated with rapid migration of Si self-interstitials (I). Further, using a concept of dual Si ion-implants long range migration of I:s at room temperature has been studied. Annihilation of vacancy-type defects at a depth of ∼3 μm is obtained by injection of I:s from a shallow implant with sufficiently high dose.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hofker, W.K., Werner, H.W., Oosthoek, D.P. and Koeman, N.J., Appl. Phys. Lett. 4, 125 (1974).Google Scholar
2. Cho, K. et al., Appl. Phys. Lett. 47, 1321 (1985).Google Scholar
3. Mitchel, A.E., Rausch, W., Ronsheim, P.A. and Kastl, R.H., Appl. Phys. Lett. 50, 416 (1987).Google Scholar
4. Raineri, V. et al., Appl. Phys. Lett. 58, 922 (1991).Google Scholar
5. Cowern, N.E.B., van de Walle, G.F.A., Zalm, P.C. and Oostra, D.J., Phys. Rev. Lett. 69, 116 (1992).Google Scholar
6. Stolk, P.A., Eaglesham, D.J., Gossmann, H.-J. and Poate, J.M., Appl. Phys. Lett. 66, 1370 (1995).Google Scholar
7. Fahey, P.M., Griffin, P.B. and Plummer, J.D., Rev. Mod. Phys. 61, 289 (1989).Google Scholar
8. Hallén, A. et al., J. Appl. Phys. 70, 3025 (1991).Google Scholar
9. Svensson, B.G., Jagadish, C. and Williams, J.S., Phys. Rev. Lett. 71, 1860 (1993).Google Scholar
10. Svensson, B.G., Jagadish, C., Hallén, A. and Lalita, J., Phys. Rev. B55, 10498 (1997).Google Scholar
11. Kyllesbech Larsen, K. et al., Phys. Rev. Lett. 76, 1493 (1996).Google Scholar
12. Privitera, V., Coffa, S., Priolo, F. and Kyllesbech Larsen, K., Nucl. Instrum. Meth. B120, 9 (1996).Google Scholar
13. Privitera, V., Coffa, S., Priolo, F., Kyllesbech Larsen, K. and Mannino, G., Appl. Phys. Lett. 68, 3422 (1996).Google Scholar
14. Priolo, F. et al, in Materials Modification and Synthesis by Ion Beam Processing, edited by Alexander, D.E., Skorupa, W., Cheung, N.W. and Park, B., (Mater. Res. Soc. Proc. 438, Pittsburgh, PA 1997), in press.Google Scholar
15. Svensson, B.G., Rydén, K.-H. and Lewerentz, B.M.S., J. Appl. Phys. 66, 1699 (1989).Google Scholar
16. Watkins, G.D. and Corbett, J.W., Phys. Rev. 121, 1001 (1961);Google Scholar
Corbett, J.W., Watkins, G.D., Chrenko, R.M. and McDonald, R.S., Phys. Rev. 121, 1015 (1961).Google Scholar
17. See, e.g., Priolo, F. and Rimini, E., Mater. Sci. Rep. 5, 319 (1990).Google Scholar
18. Watkins, G.D., in Radiation Damage in Semiconductors (Dunod, Paris, 1964) p. 97;Google Scholar
Watkins, G.D., in Lattice Defects in Semiconductors 1974 (IOP Conf. Proc. No. 23, London, 1975), p.1.Google Scholar
19. Stein, H.J. and Vook, F.L., Phys. Rev. 163, 790 (1967).Google Scholar
20. Hallén, A., Keskitalo, N., Lalita, J. and Svensson, B.G., to be published.Google Scholar
21. Corbett, J.W. and Watkins, G.D., Phys. Rev. Lett. 7, 314 (1961).Google Scholar
22. Evwaraye, A.O. and Sun, E., J. Appl. Phys. 47, 3776 (1976).Google Scholar
23. Kimerling, L.C., in Radiation Effects in Semiconductors 1976, (IOP Conf. Proc. No. 31, Bristol, 1977), p. 221.Google Scholar
24. Davies, G. and Newman, R.C., in Handbook of Semiconductors Vol.3, edited by Moss, T.S. and Mahajan, S. (Elsevier, Amsterdam, 1994) p. 1557.Google Scholar
25. Libertino, S. et al. in Materials Modification and Synthesis by Ion Beam Processing, edited by Alexander, D.E., Skorupa, W., Cheung, N.W. and Park, B., (Mater. Res. Soc. Proc. 438, Pittsburgh, PA 1997), in press.Google Scholar
26. Ziegler, J.F., Biersack, J.P. and Littmark, U., in The Stopping and Range of Ions in Solids, edited by Ziegler, J.F. (Pergamon, New York, 1985) Vol. 1.Google Scholar