Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:24:15.586Z Has data issue: false hasContentIssue false

Rapid large-scale Characterization of CVD Graphene Layers on Glass using Fluorescence Quenching Microscopy

Published online by Cambridge University Press:  30 August 2011

Jennifer Reiber Kyle
Affiliation:
Department of Electrical Engineering, University of California-Riverside, Riverside, CA 92521, USA.
Ali Guvenc
Affiliation:
Department of Electrical Engineering, University of California-Riverside, Riverside, CA 92521, USA.
Wei Wang
Affiliation:
Department of Materials Science & Engineering, University of California-Riverside, Riverside, CA 92521, USA.
Jian Lin
Affiliation:
Department of Mechanical Engineering, University of California-Riverside, Riverside, CA 92521, USA.
Maziar Ghazinejad
Affiliation:
Department of Mechanical Engineering, University of California-Riverside, Riverside, CA 92521, USA.
Cengiz Ozkan
Affiliation:
Department of Materials Science & Engineering, University of California-Riverside, Riverside, CA 92521, USA. Department of Mechanical Engineering, University of California-Riverside, Riverside, CA 92521, USA.
Mihrimah Ozkan
Affiliation:
Department of Electrical Engineering, University of California-Riverside, Riverside, CA 92521, USA.
Get access

Abstract

The exceptional electrical, optical, and mechanical properties of graphene make it a promising material for many industrial applications such as solar cells, semiconductor devices, and thermal heat sinks. However, the greatest obstacle in the use of graphene in industry is high-throughput scaling of its production and characterization. Chemical-vapor deposition growth of graphene has allowed for industrial-scale graphene production. In this work we introduce complimentary high-throughput metrology technique for characterization of chemical-vapor deposition-grown graphene. This metrology technique provides quick identification of thickness and uniformity of entire large-area chemical-vapor deposition-grown graphene sheets on a glass substrate and allows for easy identification of folds and cracks in the graphene samples. This metrology technique utilizes fluorescence quenching microscopy, which is based on resonant energy transfer between a dye molecule and graphene, to increase allow graphene visualization on the glass substrate and increase the contrast between graphene layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Castro Neto, A., Guinea, F., Peres, N., Novoselov, K., Geim, A., Rev. Mod. Phys. 81, 109162 (2009).Google Scholar
2. Geim, A., Novoselov, K., Nat. Mater. 6, 183191 (2007).Google Scholar
3. Novoselov, K., Geim, A., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., Grigorieva, I., Firsov, A., Science 306, 666669 (2004).Google Scholar
4. Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., Geim, A. K., Science 320, 1308 (2008).Google Scholar
5. Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., Geim, A. K., Phys. Rev. Lett. 97, 187401 (2006).Google Scholar
6. Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T., Ruoff, R. S., Nature 442, 282286 (2006).Google Scholar
7. Reina, A., Thiele, S., Jia, X., Bhaviripudi, S., Dresselhaus, M., Schaefer, J., Kong, J., Nano. Res. 2, 509516 (2009).Google Scholar
8. Nolen, C. M., Denina, G., Teweldebrhan, D., Bhanu, B., Balandin, A. A., ACS Nano 5(2) 914922 (2011).Google Scholar
9. Kim, J., Cote, L., Kim, F., Huang, J., Am, J.. Chem. Soc. 132, 260267 (2010).Google Scholar