Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T07:33:27.572Z Has data issue: false hasContentIssue false

Rapid Growth Kinetics, Mechanical Properties and Thermal Stability of Siox Thin Films Grown by Rapid Thermal Low Pressure Chemical Vapor Deposition

Published online by Cambridge University Press:  26 February 2011

A. Feingold
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974–0636
A. Katz
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974–0636
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974–0636
U. K. Chakrabartl
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974–0636
K. S. Jones
Affiliation:
University of Florida, Gainesville, FL
Get access

Abstract

High quality SiOx films were deposited onto InP substrates in the temperature range of 350 to 550°C and pressure range of 5 to 15 Torr. Depositions were made by means of rapid thermal low pressure chemical vapor deposition (RT-LPCVD) using oxygen (O2) and 2% diluted silane (SiH4) in argon (Ar) gas sources, with O2:SiH4 gas ratio of 5:1 to 50:1. High deposition rates of 15–50 nm/sec were obtained, providing uniform SiOx layers, with low stresses of −5×109 to −2×109 dyne-cm−2, and thermal stability on post deposition temperatures up to 1000°C. The SiOx films had refractive indexes between 1.44 and 1.50, densities of 2.25 to 2.37grcm−3 and exhibited wet etch rates of 0.2 to 0.8 nmsec.−1 through standard p-etch process. The influence of the various process parameters on the SiOx film properties was examined.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nicollan, E. H., J. Vac. Sci. Technol., 14, 112 (1977).Google Scholar
2. Katz, A. and Dautremont-Smith, W. C., J. Appl. Phys., 67, 6237 (1990).CrossRefGoogle Scholar
3. Meiners, L. G., J. Vac. Sci. Technol., 21, 655 (1982).Google Scholar
4. Kern, W., Schnable, G. L. and Fischer, A. W., RCA Rev., 3 (1976).Google Scholar
5. Kern, W. and Rosler, R. S., J. Vac. Sci. Technol., 14, 1082 (1977).CrossRefGoogle Scholar
6. Marks, J. and Robertson, R. E., Appl. Phys. Lett., 52, 810 (1988).Google Scholar
7. Nissim, Y. I., Regolini, J. L, Bensahel, D. and Licoppe, C., Electron. Lett., 24, 488 (1988).CrossRefGoogle Scholar
8. Nonaka, H., Arai, K., Fujino, Y. and Ichimura, S., J. Appl. Phys., 64, 4168 (1988).CrossRefGoogle Scholar
9. Nissim, Y. I., Regolini, J. L., Bensahel, D. and Post, G.. Mat. Res. Soc. Symp. Proc., 126, 277 (1988).CrossRefGoogle Scholar
10. Nissim, Y.I., Moison, J. M., Houzay, F, Lebland, F., Licoppe, C. and Bensoussan, M., Appl. Surf. Sci., 55, 1 (1990).Google Scholar
11. Bennet, B. R., Lorenzo, J. P., Vaccaro, K. and Davis, A., J. Electrochem. Soc, 134, 2517 (1987).Google Scholar