Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T17:52:56.006Z Has data issue: false hasContentIssue false

Rapid Evaluation of Thin Film Interfacial Reactions Using Temperature-Ramped Measurements

Published online by Cambridge University Press:  21 February 2011

J.M.E. Harper
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598
L.A. Clevenger
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598
E.G. Colgan
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598
C. Cabral Jr.
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598
B. Arcot
Affiliation:
Rensselaer Polytechnic Institute, Troy, NY 12180
Get access

Abstract

We describe an approach for rapid evaluation of thin film interfacial reactions using a combination of temperature-ramped in situ measurements of sheet resistance, calorimetry and stress. Electrical, mechanical and thermal measurements at elevated temperatures provide detailed reaction information which is unavailable in room temperature measurements. Kinetic data is particularly useful in making comparisons with mechanistic models. The following examples are discussed:

1. Effects of interfacial oxygen on Ta as a diffusion barrier between Cu and Si,

2. Effects of interfacial oxygen on the Cu/Mg reaction to form CuMg2 and Cu2Mg,

3. Effects of the density of internal interfaces (grain boundaries) on Al2Cu dissolution and precipitation in Al-Cu alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Colgan, E.G., Rodbell, K.P., Cabral, C. Jr. and Harper, J.M.E., in Advanced Metallizations for ULSI Applications in 1993, Materials Research Society, Pittsburgh, PA (in press).Google Scholar
2 Hong, Q.Z., Barmak, K. and Clevenger, L.A., J. Appl. Phys. 72, 3423 (1992).CrossRefGoogle Scholar
3 Clevenger, L.A., Mutscheller, A.G., Harper, J.M.E., Cabral, C. Jr., and Barmak, K., J. Appl. Phys. 72, 4918 (1992).CrossRefGoogle Scholar
4 Coffey, K.R., Clevenger, L.A., Barmak, K., Rudman, D.A. and Thompson, C.V., Appl. Phys. Lett. 55, 852 (1989).Google Scholar
5 Flinn, P., J. Mater. Res. 6, 1498 (1991).CrossRefGoogle Scholar
6 Gupta, J., Harper, J.M.E., Mauer, J.L., Blauner, P.G. and Smith, D.A., Appl. Phys. Lett. 61, 663 (1992).Google Scholar
7 Hong, Q.Z., d’Heurle, F.M., Harper, J.M.E. and Hong, S.Q., Appl. Phys. Lett. 62, 2637 (1993).CrossRefGoogle Scholar
8 Stolt, L., Charai, A., d’Heurle, F.M., Fryer, P.M. and Harper, J.M.E., J. Vac. Sci. Technol. A9, 1501 (1991).CrossRefGoogle Scholar
9 Clevenger, L.A., Bojarczuk, N.A., Holloway, K., Harper, J.M.E., Cabral, C. Jr., Schad, R.G., Cardone, F. and Stolt, L., J. Appl. Phys. 73, 300 (1993).CrossRefGoogle Scholar
10 Nicolet, M.-A., Thin Solid Films 52, 415 (1978).Google Scholar
11 Arcot, B., Clevenger, L.A., Murarka, S.P., Harper, J.M.E. and Cabral, C. Jr., Mat. Res. Soc. Symp. Proc. 260, 947 (1992).Google Scholar
12 Hu, C.K., Mazzeo, N. and Stanis, C., J. Mat. Chemistry and Physics 35, 95 (1993).CrossRefGoogle Scholar
13 Colgan, E.G. and Rodbell, K.P., J. Appl. Phys. (to be published).Google Scholar
14 Clevenger, L.A., Harper, J.M.E., Cabral, C. Jr., Nobili, G., Ottaviani, G. and Mann, R., J. Appl. Phys. 72, 4978 (1992).Google Scholar