Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T07:49:12.560Z Has data issue: false hasContentIssue false

Raman Study of Free Volume Effects on Ion Pairs in Polymer Electrolytes

Published online by Cambridge University Press:  28 February 2011

L. M. Torell
Affiliation:
Chalmers University of Technology Dept. of Physics, S-412 96 Gothenburg, Sweden
S. Schantz
Affiliation:
Chalmers University of Technology Dept. of Physics, S-412 96 Gothenburg, Sweden
P. Jacobson
Affiliation:
Chalmers University of Technology Dept. of Physics, S-412 96 Gothenburg, Sweden
Get access

Abstract

Ion associations are demonstrated from Raman spectra of the anion symmetric stretch in NaCF3SO3 and LiCF3SO3 containing salt polymer complexes based on PPO and siloxane modified PPO. The observation of increasing amount of ion pairs with increasing molecular weight and temperature can be explained by an entropically driven process. The entropy effect includes contributions from several factors related to transient cross-linking via the cations, conformational entropy of the polymer chains, and free volume dissimilarities between the solvated ions and the macromolecules.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kakihana, M., Schantz, S. and Torell, L. M., J. Chem. Phys. 92, 6271 (1990)Google Scholar
2. Kakihana, M., Schantz, S., Mellander, B-E and Torell, L. M., Proc. 2nd nt Symp. on Polymer Electrolytes (Elsevier, in print)Google Scholar
3. Cheradame, H., in IUPAC Macromolecules, edited by Benoit, H. and Rempp, P. (Perganon, New York, 1982) p. 251 Google Scholar
4. Schantz, S., Stevens, J. R. and Torell, L. M., (submitted to J. Chem. Phys.)Google Scholar
5. For a review see Patterson, D., Macromolecules 2, 672, (1969)CrossRefGoogle Scholar
6. Teeters, D. and Frech, R., Solid State Ionics 18–19, 271 (1986)Google Scholar
7. Greebaum, S. G., Adamic, K. J., Pak, Y. S., Wintersgill, M. C., Fontanella, J. J., Beam, D. A. and Andeen, C. G., in Proceedings of the Electrochemical Society Svmoosium on Electro-Ceramics and Solid State Ionics, Honolulu, 1987, Vol 88–3, edited by Tuller, H., (Electrochemical Society, Pennington, NJ, 1987) p. 211 Google Scholar
8. Witnersgill, M. C., Fontanella, J. J., Greenbaum, S. G. and Adamic, K. J., Br. Polym. J. 20, 195 (1988)Google Scholar
9. Sandahl, J., Schantz, S., Börjesson, L., Torell, L. M. and Stevens, J. R., J. Chem. Phys. 91, 655 (1989)CrossRefGoogle Scholar
10. Snyder, R. G. and Wunder, S. L., Macromolecules 12, 496 (1986); R. G. Snyder, N. E. Schlotter, R. Alamo and L. Mandelkern, Macromolecules 19, 621 (1986)CrossRefGoogle Scholar
11. For a review see Irish, D. E. and Brooker, M. H. in “Advances in Infrared and Raman Spectroscony” eds. Clark, R. J. H. and Hester, R. E., (London, Vol. 2, 1976), p. 212 Google Scholar
12. Frost, R. L., James, W. J., Appleby, R. and Mayes, R. E., J. Phys. Chem., 86, 3840, (1982)CrossRefGoogle Scholar
13. Maynard, K. J., Irish, D. E., Eyring, E. M. and Petrucci, S., J. Phys. Chem. 88, 729 (1984)Google Scholar
14. Schantz, S., Sandberg, M. and Kakihana, M., Solid State Ionics (in print)Google Scholar
15. Schantz, S. (accepted for J. Chem. Phys.)Google Scholar