Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T01:42:12.981Z Has data issue: false hasContentIssue false

Raman Spectroscopy on Individual Identified Carbon Nanotubes

Published online by Cambridge University Press:  06 March 2012

R. Parret
Affiliation:
Université Montpellier 2, Laboratoire Charles Coulomb, F-34095 Montpellier, France CNRS, Laboratoire Charles Coulomb, F-34095 Montpellier, France
D. Levshov
Affiliation:
Université Montpellier 2, Laboratoire Charles Coulomb, F-34095 Montpellier, France CNRS, Laboratoire Charles Coulomb, F-34095 Montpellier, France Faculty of Physics, Southern Federal University, Rostov-on-Don, Russia
T. X. Than
Affiliation:
Université Montpellier 2, Laboratoire Charles Coulomb, F-34095 Montpellier, France CNRS, Laboratoire Charles Coulomb, F-34095 Montpellier, France Laboratory of Carbon Nanomaterials, Institute of Materials Science, VAST, Hanoi, Vietnam
D. Nakabayashi
Affiliation:
Université Montpellier 2, Laboratoire Charles Coulomb, F-34095 Montpellier, France CNRS, Laboratoire Charles Coulomb, F-34095 Montpellier, France
T. Michel
Affiliation:
Université Montpellier 2, Laboratoire Charles Coulomb, F-34095 Montpellier, France CNRS, Laboratoire Charles Coulomb, F-34095 Montpellier, France
M. Paillet
Affiliation:
Université Montpellier 2, Laboratoire Charles Coulomb, F-34095 Montpellier, France CNRS, Laboratoire Charles Coulomb, F-34095 Montpellier, France
R. Arenal
Affiliation:
Laboratorio de Microscopias Avanzadas (LMA), Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain Laboratoire d’Etude des Microstructures, ONERA-CNRS, 92322 Chatillon, France
V. N. Popov
Affiliation:
Faculty of Physics, University of Sofia, BG-1164 Sofia, Bulgaria
V. Jourdain
Affiliation:
Université Montpellier 2, Laboratoire Charles Coulomb, F-34095 Montpellier, France CNRS, Laboratoire Charles Coulomb, F-34095 Montpellier, France
Yu. I. Yuzyuk
Affiliation:
Faculty of Physics, Southern Federal University, Rostov-on-Don, Russia
A. A. Zahab
Affiliation:
Université Montpellier 2, Laboratoire Charles Coulomb, F-34095 Montpellier, France CNRS, Laboratoire Charles Coulomb, F-34095 Montpellier, France
J.-L. Sauvajol
Affiliation:
Université Montpellier 2, Laboratoire Charles Coulomb, F-34095 Montpellier, France CNRS, Laboratoire Charles Coulomb, F-34095 Montpellier, France
Get access

Abstract

In this paper, we discuss the low-frequency range of the Raman spectrum of individual suspended index-identified single-walled (SWCNTs) and double-walled carbon nanotubes (DWCNTs). In SWCNTs, the role of environment on the radial breathing mode (RBM) frequency is discussed. We show that the interaction between the surrounding air and the nanotube does not induce a RBM upshift. In several DWCNTs, we evidence that the low-frequency modes cannot be connected to the RBM of each related layer. We discuss this result in terms of mechanical coupling between the layers which results in collective radial breathing-like modes. The mechanical coupling qualitatively explains the observation of Raman lines of radial breathing-like modes, whenever only one of the layers is in resonance with the incident laser energy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bachilo, S. M., Strano, M., Kittrell, C., Hauge, R. H., Smalley, R. E. and Weisman, R. B., Science 298, 2361 (2002).Google Scholar
2. Fantini, C., Jorio, A., Souza, M., Strano, M. S., Dresselhaus, M. S. and Pimenta, M., Phys. Rev. Lett. 93, 147406 (2004).Google Scholar
3. Telg, H., Maultzsch, J., Reich, S., Hennrich, F. and Thomsen, C., Phys. Rev. Lett. 93, 177401 (2004).Google Scholar
4. Strano, M. S., Doorn, S. K., Hároz, E. H., Kittrell, C., Hauge, R. H., and Smalley, R. E., Nano Lett. 3, 1091 (2003).Google Scholar
5. Araujo, P. T., Doorn, S. K., Kilina, S., Tretiak, S., Einarson, E., Maruyama, S., Chacam, H., Pimenta, M. A. and Jorio, A., Phys. Rev. Lett. 98, 067401 (2007).Google Scholar
6. Hároz, E. H., Duque, J. G., Rice, W.D., Densmore, C. G., Kono, J. and Doorn, S.K., Phys. Rev. B 84, 121403(R) (2011).Google Scholar
7. Telg, H., Duque, J. G., Staiger, M., Tu, X., Hennrich, F., Kappes, M. M., Zheng, M., Maultzsch, J., Thomsen, C. and Doorn, S. K., ACS Nano 6, 904 (2012).Google Scholar
8. Meyer, J. C., Paillet, M., Michel, T., Moréac, A., Neumann, A., Duesberg, G. S., Roth, S. and Sauvajol, J.-L., Phys. Rev. Lett. 95, 217401 (2005).Google Scholar
9. Paillet, M., Michel, T., Meyer, J.C., Popov, V.N., Henrard, L., Roth, S. and Sauvajol, J.-L., Phys. Rev. Lett. 96, 257401 (2006).Google Scholar
10. Michel, T., Paillet, M., Meyer, J.C., Popov, V.N., Henrard, L. and Sauvajol, J-L, Phys. Rev. B 75, 155432 (2007).Google Scholar
11. Michel, T., Paillet, M., Meyer, J. C., Popov, V.N., Henrard, L., Poncharal, P., Zahab, A. A. and Sauvajol, J.-L., Physica Status Solidi b 244, 3986 (2007).Google Scholar
12. Michel, T., Paillet, M., Nakabayashi, D., Picher, M., Jourdain, V., Meyer, J. C., Zahab, A. A. and Sauvajol, J.-L., Phys. Rev. B 80, 245416 (2009).Google Scholar
13. Débarre, A., Kobylko, M., Bonnot, A.-M., Richard, A., Popov, V. N., Henrard, L. and Kociak, M., Phys. Rev. Lett. 101, 197403 (2008).Google Scholar
14. Sfeir, M. Y., Beetz, T., Wang, F., Huang, L., Huang, X. M. H., Huang, M., Hone, J., O’Brien, S., Misewich, J. A., Heinz, T. F., Wu, L., Zhu, Y. and Brus, L. E., Science 312, 554 (2006).Google Scholar
15. Pfeiffer, R., Simon, F., Kuzmany, H., and Popov, V.N., Phys. Rev. B 72, 161404 (2005).Google Scholar
16. Bandow, S., Chen, G., Sumanesekera, U., Gupta, R., Yudasaka, M., Iijima, S. and Eklund, P.C., Phys. Rev. B 66, 075416 (2002).Google Scholar
17. Villalpando-Paez, F., Moura, L. G., Fantini, C., Muramatsu, H., Hayashi, T., Kim, Y.A., Endo, M., Terrones, M., Pimenta, M. A. and Dresselhaus, M. S., Phys. Rev. B 82, 155416 (2010).Google Scholar
18. Villalpando-Paez, F., Son, H., Nezich, D., Hsieh, Y. P., Kong, J., Kim, Y. A., Shimamoto, D., Muramatsu, H., Hayashi, T., Endo, M., Terrones, M. and Dresselhaus, M. S., Nano Lett. 8, 3879 (2008).Google Scholar
19. Araujo, P. T., Maciel, I. O., Pesce, P. B. C., Pimenta, M. A., Doorn, S. K., Quian, H., Hartschuh, A., Steiner, M., Grigorian, L., Hata, K., and Jorio, A., Phys. Rev. B 77, 241403 (2008).Google Scholar
20. Mahan, G. D., Phys. Rev. B 65, 235402 (2002).Google Scholar
21. Liu, K., Wang, W., Wu, M., Xiao, F., Hong, X., Aloni, S., Bai, X., Wang, E. and Wang, F., Phys. Rev. B 83, 113404 (2011).Google Scholar
22. Popov, V. N. and Henrard, L., Phys. Rev. B 65, 235415 (2002).Google Scholar
23. Levshov, D., Than, T. X., Arenal, R., Popov, V. N., Parret, R., Paillet, M., Jourdain, V., Zahab, A. A., Michel, T., Yuzyuk, Yu. I., and Sauvajol, J.-L., Nano Lett. 11, 4800 (2011).Google Scholar
24. Spudat, C., Müller, M., Houben, L., Maultzsch, J., Goss, K., Thomsen, C., Schneider, C. M., and Meyer, C., Nano Lett. 10, 4470 (2010).Google Scholar
25. Hertel, T., Hagen, A., Talalaev, V., Arnold, K., Hennrich, F., Kappes, M., Rosenthal, S., McBride, J., Ulbricht, H. and Flahaut, E., Nano Lett. 5, 511 (2005).Google Scholar