Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:55:21.303Z Has data issue: false hasContentIssue false

Raman Spectroscopy of Size Selected, Matrix Isolated Si Clusters

Published online by Cambridge University Press:  21 February 2011

A. Ogura
Affiliation:
Resident Visitor from NEC Microelectronics Res. Labs., Tsukuba, Japan
E. C. Honea
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
C. A. Murray
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
K. Raghavachari
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
W. O. Sprenger
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
M. F. Jarrold
Affiliation:
Department of Chemistry, Northwestern University, Evanton, IL 60208
W. L. Brown
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
Get access

Abstract

We report results of Raman spectroscopy of size selected, matrix isolated Si clusters. Cluster ions produced by laser vaporization are size selected by a quadruple mass spectrometer and co-deposited with cryogenic matrices onto a substrate at ∼15K. A surface-plasmon-polariton-enhanced Raman geometry is used to gain adequate signal.

The observed vibrational frequencies from Si4, Si6 and Si7 are compared with theoretically calculated Raman active modes based on the structures of planar rhombus, distorted octahedron and pentagonal bipyramid, respectively. The agreement is excellent. Cluster agglomeration is observed when cluster concentrations exceed ∼0.3% by volume in the matrix and/or with annealing at ∼28K, below the temperature of matrix evaporation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Brown, W. L., Freeman, R. R., Raghavachari, K. and Schluter, M., Science 235, 860(1991).Google Scholar
2) Jarrold, M. F., Science 252, 1085(1991).CrossRefGoogle Scholar
3) Arnold, C. C., Kitsopoulos, T. N. and Neumark, D. M., J. Chem. Phys. 99, 766(1993).CrossRefGoogle Scholar
4) Kitsopoulos, T. N., Chick, C. J., Weaver, A. and Neumark, D. M., J. Chem. Phys. 93, 6108(1990).Google Scholar
5) Arnold, C. C. and Neumark, D. M., J. Ch.m. Phys. 99, 3353(1993).Google Scholar
6) Bower, J. E. and Jarrold, M. F., J. Chem. Phys. 97, 8312(1992)Google Scholar
7) Kretschmann, E., Z. Physik 241, 313(1971).Google Scholar
8) Chen, Y. J., Chen, W. P. and Burstein, E., Phys. Rev. Lett. 36, 1207(1976).Google Scholar
9) Sakaoda, K., Ohtaka, K. and Hanamura, E., Solid St. Comun. 41, 393(1982).CrossRefGoogle Scholar
10) Schlemminger, W. and Stark, D., Thin Solid Films 137, 49(1986).CrossRefGoogle Scholar
11) Honea, E. C., Ogura, A., Murray, C. A., Raghavachari, K., Sprenger, W. O., Jarrold, M. F. and Brown, W. L., Nature 366, 42(1993).CrossRefGoogle Scholar
12) Hout, R. F., Levi, B. A. and Hehre, W. J., J. Comput. Chem. 3, 234(1982).Google Scholar
13) Tanino, H., Ganguly, G. and Matsuda, A., Phys. Rev. B, 46, 15277(1992).Google Scholar