Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:05:47.715Z Has data issue: false hasContentIssue false

Raman Spectroscopy of Group IV Nanostructured Semiconductors: Influence of Size and Temperature

Published online by Cambridge University Press:  01 February 2011

Alfredo Torres
Affiliation:
[email protected], Universidad de Valladolid, Física de la Materia Condensada, Valladolid, Spain
Oscar Martínez
Affiliation:
[email protected], Universidad de Valladolid, Física de la Materia Condensada, Valladolid, Spain
Carmelo Prieto
Affiliation:
[email protected], Universidad de Valladolid, Física de la Materia Condensada, Valladolid, Spain
Juan Jimenez
Affiliation:
[email protected], United States
Andrés Rodríguez
Affiliation:
[email protected], Universidad Politécnica de Madrid, Tecnología Electrónica, Madrid, Spain
Jesús Sangrador
Affiliation:
[email protected], Universidad Politécnica de Madrid, Tecnología Electrónica, Madrid, Spain
Tomás Rodríguez
Affiliation:
[email protected], Universidad Politécnica de Madrid, Tecnología Electrónica, Madrid, Spain
Get access

Abstract

Group IV nanostructures have attracted a great deal of attention because of their potential applications in optoelectronics and nanodevices. Raman spectroscopy has been extensively used to characterize nanostructures since it provides non destructive information about their size, by the adequate modeling of the phonon confinement effect. However, the Raman spectrum is also sensitive to other factors, as stress and temperature, which can mix with the size effects borrowing the interpretation of the Raman spectrum. We present herein an analysis of the Raman spectra obtained for Si nanowires; the influence of the excitation conditions and the heat dissipation media are discussed in order to optimize the experimental conditions for reliable spectra acquisition and interpretation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Richter, H., Wang, Z.P., and Ley, L., Sol. St. Commun. 39, 625 (1981).Google Scholar
2. Campbell, I.H., and Fauchet, P.M.; Sol. St. Commun. 58, 739 (1986).Google Scholar
3. Zi, J., Zhang, K., and Xie, X., Phys. Rev. B 55, 9263 (1997).Google Scholar
4. Li, B., Yu, D., and Zhang, S.L., Phys. Rev. B 59, 1645 (1999).Google Scholar
5. Mishra, P., and Jain, K.P., Phys. Rev. B 62, 14790 (2000).Google Scholar
6. Konstantinovic, M.J., Bersier, S., Wang, X., Hayne, M., Lievens, P., Silverans, R.E., and Moshchalkov, V.V., Phys. Rev. B 66, 161311(R) (2002).Google Scholar
7. Piscanec, S., Cantoro, M., Ferrari, A.C., Zapien, J.A., Lifshitz, Y., Lee, S.T., Hofman, S., and Robertson, S., Phys. Rev. B 68, 241312 (R) (2003).Google Scholar
8. Bhattacharyya, S., and Saumi, S., Appl. Phys. Lett. 84, 1564 (2004).Google Scholar
9. Jiménez, J., de Wolf, I., Landesman, J.P., in Microprobe Characterization of Semiconductors; vol.17 of Optoelectronic properties of semiconductors and superlattices, Vol 17, ed. by Jiménez, J. (Taylor and Francis, New York 2002), ch.2.Google Scholar
10. Jiménez, J., Torres, A., Martín, E., and Landesman, J. P.; Phys. Rev. B 58, 10463 (1998).Google Scholar
11. Scheel, H., Reich, S., Ferrari, A.C., Cantoro, M., Colli, A., and Thomsen, C., Appl. Phys. Lett. 88, 233114 (2006).Google Scholar
12. Wei, S., and Chou, M.Y., Phys. Rev. B 50, 2221 (1994).Google Scholar
13. Tanaka, A., Onari, S., and Arai, T., Phys. Rev. B 45, 6587 (1992).Google Scholar