Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-06T06:18:13.755Z Has data issue: false hasContentIssue false

Raman Spectroscopy Measurements of Interface Effects in C60/Copper-Oxide/Copper

Published online by Cambridge University Press:  11 February 2011

Y. Li
Affiliation:
Department of Physics, University of Texas at Arlington, Arlington, TX 76019, USA
J. H. Rhee
Affiliation:
Department of Physics, University of Texas at Arlington, Arlington, TX 76019, USA
D. Singh
Affiliation:
Department of Physics, University of Texas at Arlington, Arlington, TX 76019, USA
S. C Sharma*
Affiliation:
Department of Physics, University of Texas at Arlington, Arlington, TX 76019, USA
Get access

Abstract

We have investigated interface effects in C60/Cu-oxide/Cu structures. C60 thin films were grown under high vacuum by thermal evaporation and the well-known “pentagonal pinch mode” of C60, Ag(2) band was examined by Raman spectroscopy. We observe Raman-active bands centered at 1420, 1448, 1455, and 1465 cm−1 in C60/Cu-oxide/Cu samples with a thin (∼40 nm) C60 overlayer. The 1420, 1448, and 1455 cm−1 Raman bands are not observed in the spectra of pristine C60 powder, copper-oxide substrate, and C60/Cu-oxide/Cu samples with thick (∼1.3 μm) C60 overlayer. We associate these new Raman-active bands with C60/copper-oxide interface.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Goldoni, A., Cepek, C., Larciprete, R., Pagliara, S., Sangaletti, L., and Paolucci, G., Surf. Scie. 482–485, (2001) 606.CrossRefGoogle Scholar
2. Li, X., Tang, Y. J., Zhao, H. W., Zhan, W. S., Wang, H., and Hou, J. G., Appl. Phys. Lett. 77, (2000), 984.CrossRefGoogle Scholar
3. Seta, M. D., Sanvitto, D., and Evangelisti, F., Phys. Rev. B 59, (1999), 9878.CrossRefGoogle Scholar
4. Manaila, R., Marian, A. B., Macovei, D., Brehm, G., Marian, D. T., and Baltog, I., J. Raman Spectro. 30, (1999), 1019.3.0.CO;2-W>CrossRefGoogle Scholar
5. Chase, S. J., Bacsa, W. S., Mitch, M. G., Pilione, L. J., and Lannin, J. S., Phys. Rev. B 46, (1992), 7873.CrossRefGoogle Scholar
6. Tsuei, K. D., Yuh, J. Y., Tzeng, C. T., Chu, R. Y., Chung, S. C., and Tsang, K. L., Phys. Rev. B 56, (1997), 15412.CrossRefGoogle Scholar
7. MER Corporation, Tucson, Arizona.Google Scholar
8. Govinthasamy, R., Rhee, J. H., and Sharma, S. C., Mat. Res. Soc. Symp. Proc. 734, (2003) B9.30.1.Google Scholar
9. Sharma, S. C., Ha, B., Rhee, J. H., and Li, Y., in Frontiers of High Pressure Research II: Applications of High Pressure to Low-Dimensional Novel Electronic Materials, eds. Hochheimer, H. D., Kuchta, B., Dorhout, P. K., and Yarger, J. L., NATO Science Series (2001) 493.CrossRefGoogle Scholar
10. Sharma, S. C., Ha, B., Rhee, J. H., Li, Y., Singh, D., and Govinthasamy, R., Mat. Res. Soc. Symp. Proc. 695, (2002) 97.Google Scholar
11. Ha, B., Rhee, J. H., Li, Y., Singh, D., and Sharma, S. C., Surf. Scie. 520, (2002), 186.CrossRefGoogle Scholar
12. Yamawaki, H., Yoshida, M., Kakudate, Y., Usuba, S., Yokoi, H., Fujiwara, S., and Aoki, K., J. Phys. Chem. 97, (1993), 11161.CrossRefGoogle Scholar