Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T01:45:03.386Z Has data issue: false hasContentIssue false

Raman Spectroscopy for Carbon Based Amorphous Thin Films

Published online by Cambridge University Press:  01 February 2011

Giuseppe Compagnini*
Affiliation:
Dipartimento di Scienze Chimiche, University of Catania, Viale A. Doria 6 Catania 95125, Italy
Get access

Abstract

Vibrational spectroscopies and in particular Raman spectroscopy are known to be among the most useful tools to characterize and control the properties of carbon materials. This is because of the possibility to detect and study the carbon bonding state and because of the strong correlation between shape and width of the vibrational signals and the structure of the amorphous network. The aim of this work is to present some experiments in which the formation and evolution of carbon films obtained by energetic particle irradiation of solid targets or by deposition of carbonaceous species onto suitable surfaces, are controlled and studied by these methods. Particular attention will be given to pure amorphous carbon films and carbon based binary alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] see for instance “Raman Scattering in Material Science” edited by R. Merlin (Springer, 2000)Google Scholar
[2] Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C.Science of fullerenes and carbon nanotubes” (acad.Press. NY 1996)Google Scholar
[3] “Optical properties of low dimensional materials” edited by T. Ogawa, Y. Kanemitsu (world Scientific, 1995)Google Scholar
[4] Venturini, J., Koudoumas, E., Couris, S., Janot, J.M., Seta, P., Mathis, C., Leach, S. J. Mater. Chem. 12, 2071 (2002)Google Scholar
[5] Koudoumas, E., Kokkinaki, O., Konstantaki, M., Couris, S., Korovin, S., Detkov, P., Kuznetsov, V., Pimenov, S., Pustovoi, V., Chem. Phys. Lett. 357, 336 (2002)Google Scholar
[6] Lifshitz, Y., Diam. Rel. Mat. 8, 1659 (1999)Google Scholar
[7] Brucato, J.R., Baratta, G.A., Compagnini, G., Strazzulla, G., Mater. Sci. Forum 258–263, 611 (1997)Google Scholar
[8] Baratta, G.A., Mennella, V., Brucato, J.R., Colangeli, L., Leto, G., Palumbo, M.E., Strazzulla, G., J. Raman Spec. 35, 487 (2004)Google Scholar
[9] Strazzulla, G., Baratta, G.A., Palumbo, M.E., Spectrochimica Acta 57, 825 (2001)Google Scholar
[10] Rimini, E.Ion impantation technology: basics to devices” (Kluwer, 1995)Google Scholar
[11] Battaglia, A., Coffa, S., Priolo, F., Compagnini, G., Baratta, G.A., Appl. Phys. Lett. 63, 2204 (1993)Google Scholar
[12] Roorda, S., Poate, J.M., Jacobson, D.C., Dennis, B.S., Dierker, S., Sinke, W.C., Appl. Phys. Lett. 56, 2097 (1990)Google Scholar
[13] Compagnini, G., Baratta, G.A., Appl. Phys. Lett. 61, 1796 (1992)Google Scholar
[14] Elman, B.S., Dresselhaus, M.S., Dresselhaus, G., Maby, E.W., Mazurek, H., Phys. Rev. B 24, 1027 (1981)Google Scholar
[15] Tuistra, F., Koenig, J.L., J. Chem. Phys. 53, 1126 (1970)Google Scholar
[16] Ferrari, A.C., Robertson, J., Phys. Rev. B 61, 14095 (2001)Google Scholar
[17] Compagnini, G., Calcagno, L., Mat. Sci. Eng. R13, 193 (1994)Google Scholar
[18] Robertson, J., Mat. Sci. Eng. R37, 129 (2002)Google Scholar
[19] Compagnini, G., Calcagno, L., Foti, G., Phys. Rev. Lett 69, 454 (1992)Google Scholar
[20] Compagnini, G., Foti, G., Makhtari, A., Europh. Lett. 41, 225 (1998)Google Scholar
[21] Compagnini, G. in “The physics of Diamond” Proceedings of the International School of Physics “E. Fermi” Corse CXXXV edited by Paoletti, A., Tucciarone, A., 1997 pag. 255 Google Scholar
[22] Compagnini, G., Foti, G., Nucl. Instr. Meth. B127/128, 639 (1997)Google Scholar
[23] Calcagno, L., Compagnini, G., Foti, G., Grimaldi, M.G., Musumeci, P., Nucl. Instr. Meth. B120, 121 (1996)Google Scholar
[24] Fallon, P.J., Veerasamy, V.S., Davis, C.A., Robertson, J., Amaratunga, G.A.J., Milne, W.I., Koskinen, J., Phys. Rev. B48, 4777 (1993)Google Scholar
[25] Ferrari, A.C., Robertson, J. Phys. Rev. B 64, 075414 (2001)Google Scholar
[26] Profeta, M., Mauri, F., Phys. Rev. B63, 245415 (2001)Google Scholar
[27] for a complete review see: R., Carbyne and Carbynoid Structures”. edited by Heimann, B., Evsyukov, S.E. and Kavan, A.L. (Kluver, 1999)Google Scholar
[28] see for instance: Henning, T., Salama, F., Science 282, 2204 (1998)Google Scholar
[29] Perez, A., Melinon, P., Dupuis, V., Jensen, P., Prevel, B., Tuaillon, J., Bardotti, L., Martet, C., Treilleux, M., Broyer, M., Pellarin, M., Vaille, J.L., Palpant, B., Lerne, J., J. Phys. D 30, 709 (1997)Google Scholar
[30] Rohlfing, E.A., Cox, D.M., Kaldor, A., J. Chem. Phys. 81, 3322 (1984)Google Scholar
[31] Casari, C.S., Li Bassi, A., Ravagnan, L., Siviero, F., Lenardi, C., Piseri, P., Bongiorno, G., Bottani, C.E., Milani, P., Phys. Rev. B 69, 075422 (2004)Google Scholar
[32] Kastner, J., Kuzmany, H., Kavan, L., Dousek, F.P., Kueri, J., Macromolecules 28, 344 (1995)Google Scholar