Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:16:09.987Z Has data issue: false hasContentIssue false

Raman spectra of CdSe/ZnS quantum dots bioconjugated to ovarian cancer antibodies

Published online by Cambridge University Press:  19 March 2012

A.L. Quintos Vazquez
Affiliation:
ESIME – Instituto Politécnico Nacional, av.IPN, México D. F. 07738, México.
T. V. Torchynska
Affiliation:
ESFM – Instituto Politécnico Nacional, av.IPN, México D. F. 07738, México.
L. Shcherbyna
Affiliation:
V. Lashkarev Institute of Semiconductor Physics at NASU, av. Nauky 45, Kiev, 03028, Ukraine.
Get access

Abstract

This paper presents the analysis of Raman scattering spectra of CdSe/ZnS QDs covered by the amine-derivatized polyethylene glycol (PEG) polymer with and without bioconjugation to bio-molecules: mouse ovarian cancer (OC 125) antibodies (mab). Commercial CdSe/ZnS QDs used in the study are characterized by the color emission with the maximum at 525 nm (2.36 eV) at 300K. Samples of CdSe/ZnS QDs (bio-conjugated and non -conjugated) in the form of an 5 mm-size spot were dried on a polished surface of crystalline Si substrate to ensure a low level of light scattering background.

Raman scattering spectra of non-conjugated QDs can be presented as a superposition of Raman lines: 212.2, 222.5, 308.3, 440.3, 521.0, 618.0, 667.8 943.5, 986.7, cm-1 related to the CdSe core and silicon substrate. The Raman lines 1003.9, 1317.8, 1452.9, 1656.8, 2870.4, 2931.8 and 3059.9 cm-1 deal with the vibration of COH, CH and OH groups of polymer, which covered QDs, were detected additionally. It is revealed that the QD bio-conjugation to the OC 125 antibodies is accompanied with the changes in the intensity of all types of Raman lines: related to the CdSe core, silicon substrate and polymer groups. The explanation of bioconjugation effects has been proposed and discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kuno, M., Fromm, D.P., Hamann, H.F., Gallagher, A., Nesbitt, D.J., J. Chem. Phys. 115, 1028 (2001).Google Scholar
2. Dybiec, M., Chomokur, G., Ostapenko, S., Wolcott, A., Zhang, J. Z., Zajac, A., Phelan, C., Sellers, T., Gerion, G., Appl. Phys. Lett. 90, 263112 (2007).Google Scholar
3. Mews, A., Eychmuller, A., Giersig, M., Schoos, D., Weller, H., J. Phys. Chem. 98, 934 (1994).Google Scholar
4. Ebenstein, Y., Mokari, T., J. Phys. Chem. B 108, 93 (2004).Google Scholar
5. Torchynska, T.V, Nanotechnology, 20, 095401 (2009).Google Scholar
6. Torchynska, T.V., Douda, J., Ostapenko, S.S., Jimenez-Sandoval, S., Phelan, C., Zajac, A., Zhukov, T., Sellers, T., J. of Non-Crystal. Solid. 354, 2885 (2008).Google Scholar
7. Torchynska, T. V., Diaz Cano, A., Dybic, M., Ostapenko, S., Morales Rodrigez, M., Jimenes Sandoval, S., Vorobiev, Y., Phelan, C., Zajac, A., Zhukov, T., Sellers, T., phys. stat. sol. (c), 4, 241 (2007).Google Scholar
8. Torchynska, T. V., Douda, J., Calva, P. A., Ostapenko, S. S. and Peña Sierra, R.. J. Vac. Sci. &Technol. 27(2), 836 (2009).Google Scholar
9. Torchynska, T. V., Douda, J., and Peña Sierra, R., phys. stat. sol. (c), 6, S143 (2009).Google Scholar
10. Vega Macotela, L.G., Douda, J., Torchynska, T.V., Pena Sierra, R. and Shcherbyna, L. phys.stat.solid. (c) 7, 724 (2010).Google Scholar
11. Wolcott, A., Gerion, D., Visconte, M., Sun, J., Schwartzberg, Ad., J. Phys. Chem. B, 110, 5779 (2006).Google Scholar
12. Clapp, A.R., Medintz, I. L., Mauro, J. M, Fisher, Br. R., Bawendi, M. G., J. AM. Chem. Soc. 126, 301310 (2004).Google Scholar
15. Torchynska, T.V., Khomenkova, L.I., Korsunska, N.E., Dzumaev, B.R., J. Phys. Chem. Solids, 61 (6), 937-941 (2000).Google Scholar
16. Korsunskaya, N.E., Markevich, I V, Torchinskaya, T.V and Sheinkman, M.K, phys. stat. sol (a), 60 565 (1980).Google Scholar
17. Korsunskaya, N.E., Markevich, I V, Torchinskaya, T.V and Sheinkman, M.K, J. Phys. C: Solid State Phys. 13 2975 (1980).Google Scholar
18. Korsunskaya, N.E., Markevich, I V, Torchinskaya, T.V and Sheinkman, M.K, J. Phys. Chem. Solids, 43, 475(1982)Google Scholar
19. Temple, P.A. and Hathaway, C. E., Phys. Rev. B, 7, 3685 (1973).Google Scholar
20. Johnson, F.A. and Loudon, R., Proc. Roy. Soc. A, 281, 274 (1964).Google Scholar
21. Torchynska, T.V., Goldstein, Y., Many, A., Jedrzejewskii, J., Kolobov, A.V., Microelect. Engineer. 66 (1–4), 83-90 (2003).Google Scholar
22. Kozielski, M., Muhle, M., J. Molecul. Liquid. 111, 1 (2004).Google Scholar