Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-20T00:40:28.677Z Has data issue: false hasContentIssue false

Raman Scattering Spectra in Be-Implanted GaN Epilayers

Published online by Cambridge University Press:  01 February 2011

L. S. Wang
Affiliation:
Institute of Material Research & Engineering, 3 Research Link, 117602, Singapore
W. H. Sun
Affiliation:
Institute of Material Research & Engineering, 3 Research Link, 117602, Singapore
S. J. Chua
Affiliation:
Institute of Material Research & Engineering, 3 Research Link, 117602, Singapore
Get access

Abstract

Ion-implantation has been an interesting topic on impurity-doping in GaN. Raman measurement is a strong tool for the characterization of semiconductors. We have investigated the Raman scattering spectra in Be-implanted GaN epilayers. In as-implanted GaN, new Raman bands at ∼310, ∼360, 669 cm-1 appeared. From phonon-dispersion curves for hexagonal GaN, the ∼300 cm-1 and 669 cm-1 bands were assigned to the highest acoustic-phonon branch and the optical-phonon branch at the Brillouin zone boundaries, respectively. Two sharp bands at 168 and 199 cm-1 were observed in the Raman spectra of Be-implanted GaN after post-implantation annealing treatments. We tentatively assign these two bands to Be-related local vibrational modes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S. and Fasol, G., “The Blue Laser Diode-Gallium-Nitride Based Light Emitter and Laser” (Springer, New York, 1997).Google Scholar
2. Pankove, J. I. and Hutchby, J. A., J. Appl. Phys. 47, 5387 (1976)Google Scholar
3. Pankove, J. I. and Hutchby, J. A., Appl. Phys. Lett. 24, 281 (1974)Google Scholar
4. Eiting, C. J., Grudoski, P. A., Dupuis, R. D., Hsia, H., Tang, Z., Becher, D., Kuo, H., Stillman, G. E., and Feng, M., Appl. Phys. Lett. 73, 3875 (1998)Google Scholar
5. Zolper, J. C., J. Cryst. Growth 178, 157 (1997)Google Scholar
6. Zolper, J. C., Tan, H. H., Williams, J. S., Zou, J., Cockayne, D. J. H., Pearton, S. J., Crawford, M. H., and Karlicek, R. F. Jr, Appl. Phys. Lett. 70, 2729 (1997)Google Scholar
7. Seager, C. H., Myers, S. M., Petersen, G. A., Han, J., and Headley, T., J. Appl. Phys. 85, 2568 (1999)Google Scholar
8. Duan, J. Q., Zhang, B. R., and Zhang, Y. X., Wang, L. P., and Qin, G. G., Zhang, G. Y., Tong, Y. Z., Jin, S. X., Yang, Z. J., Zhang, X., and Xu, Z. H., J. Appl. Phys. 82, 5745 (1997)Google Scholar
9. Siegle, H., Kaczmarczyk, G., Filippidis, L., Litvinchuk, A. P., Hoffmann, A., and Thomsen, C., Phys. Rev. B55, 7000 (1997)Google Scholar
10. Behr, D., Niebuhr, R., Wagner, J., Bachem, K. -H., and Kaufman, U., Appl. Phys. Lett. 70, 363 (1997)Google Scholar
11. Walle, Chris G. Van De and Limpijumnong, Sukit, Phys. Rev. B 63, 245205(2001).Google Scholar