Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-05T22:08:59.890Z Has data issue: false hasContentIssue false

Raman scattering of self-assembled gallium nitride nanorods synthesized by plasma-assisted molecular beam epitaxy

Published online by Cambridge University Press:  01 February 2011

D. Wang
Affiliation:
[email protected], Auburn University, Laboratory for Nanophotonics and Department of Physics, United States
C.-C. Tin
Affiliation:
[email protected], Auburn University, Laboratory for Nanophotonics and Department of Physics, United States
J. R. Williams
Affiliation:
[email protected], Auburn University, Laboratory for Nanophotonics and Department of Physics, United States
M. Park
Affiliation:
[email protected], Auburn University, Laboratory for Nanophotonics and Department of Physics, United States
Y. S. Park
Affiliation:
[email protected], Dongguk University, Quantum Functional Semiconductor Research Center and Department of Physics, Korea, Republic of
C. M. Park
Affiliation:
[email protected], Dongguk University, Quantum Functional Semiconductor Research Center and Department of Physics, Korea, Republic of
T. W. Kang
Affiliation:
[email protected], Dongguk University, Quantum Functional Semiconductor Research Center and Department of Physics, Korea, Republic of
W.-C. Yang
Affiliation:
[email protected], Dongguk University, Quantum Functional Semiconductor Research Center and Department of Physics, Korea, Republic of
Get access

Abstract

Raman scattering experiment was carried out to study material and electronic properties of the aligned GaN nanorods grown by plasma-assisted molecular beam epitaxy. Due to the small size of the nanorods and the relatively high power density of the laser illumination used in this investigation, local heating of the sample cannot be neglected. Special care has been taken to identify the frequency shift in the optical phonon peaks induced by local heating prior to any spectral analysis. The residual stress in the GaN nanorods was estimated by analyzing the frequency shift of its E2 Raman mode. It was found that the frequency of E2 mode is shifted by only 0.1 cm-1 comparing with the stress-free frequency, indicating a negligible residual stress in nanorods. Owing to aligned geometry of the nanorods and the back-scattering scattering geometry used in the experiment, A1(LO) Raman mode was collected. The free carrier concentration as well as electron mobility of the GaN nanorods were obtained by the line shape analysis of the coupled A1(LO) phonon-plasmon mode. The electron concentration and mobility of electron obtained from line shape analysis are 3.3×1017 cm-3 and 140 cm2/Vs, respectively. We presented a general method of better determining the electronic parameters of the GaN nanostructures via Raman scattering.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Mooradian, A. and Wright, G. B., Phys. Rev. Lett., 16, 999 (1966).CrossRefGoogle Scholar
2 Varga, B. B., Phys. Rev. A, 137, 1896 (1965).CrossRefGoogle Scholar
3 Kozawa, T., Kachi, T., Kano, H., Taga, Y., Hashimoto, M., Koide, N., and Manabe, K., J. Appl. Phys. 75, 1098 (1994).CrossRefGoogle Scholar
4 Perlin, P., Camassel, J., Knap, W., Taliercio, T., Chervin, J. C., Suski, T., Grzegory, I., and Porowski, S., Appl. Phys. Lett. 67, 2524 (1995).CrossRefGoogle Scholar
5 Harima, H., Sakashita, H., and Nakashima, S., Materials Science Forum, 264–268, 1363 (1998).CrossRefGoogle Scholar
6 Wieser, N., Klose, M., Scholz, F. and Off, J., Materials Science Forum 264, 1351 (1998).CrossRefGoogle Scholar
7 Meister, D., Böhm, M., Topf, M., Kriegseis, W., Burkhardt, W., Dirnstorfer, I., Rösel, S., Farangis, B., Meyer, B. K., Hoffmann, A., Siegle, H., Thomsen, C., Christen, J. and Bertram, F., J. Appl. Phys. 88, 1811 (2000).CrossRefGoogle Scholar
8 Siegle, H., Hoffmann, A., Eckey, L., Thomsen, C., Christen, J., Bertram, F., Schmidt, D., Rudloff, D., and Hiramatsu, K., Appl. Phys. Lett. 71, 2490 (1997).CrossRefGoogle Scholar
9 Frayssinet, E., Knap, W., Krukowski, S., Perlin, P., Wisniewski, P., Suski, T., Grzegory, I. and Porowski, S., J. Crystal Growth 230, 442 (2001).CrossRefGoogle Scholar
10 Park, M., Cuomo, J. J., Yang, W.-C., Rodriguez, B. J., Nemanich, R. J., Ambacher, O., J. Appl. Phys. 93, 9542 (2003).CrossRefGoogle Scholar
11 Park, Y. S., Park, C. M., Fu, D. J., Kang, T. W., and Oh, J. E., Appl. Phys. Lett. 85, 5718 (2004);CrossRefGoogle Scholar
Park, Y. S., Lee, S. H., Oh, J. E., Park, C. M., and Kang, T. W., accepted for publication in J. Crystal Growth (2005).Google Scholar
12 Wang, D., Tin, C.-C., Williams, J. R., Park, M., Park, Y. S., Park, C. M., Kang, T. W., and Yang, W.-C., J. Appl. Phys, Accepted for publication (2005).Google Scholar
13 Alim, K. A., Fonobeov, V. A., Balndin, A. A., Appl. Phys. Lett. 86, 053103 (2005).CrossRefGoogle Scholar
14 Balkanski, M., Wallis, R. F., and Haro, E., Phys. Rev. B 28, 1928 (1983).CrossRefGoogle Scholar
15 Liu, M.S., Bursill, L.A., Prawer, S., Nugent, K., Tong, Y. Z., Zhang, G. Y., Appl. Phys. Lett. 74, 3125 (1999).CrossRefGoogle Scholar
16 Arguello, C. A., Rousseau, D. L., Porto, S. P. S., Phys. Rev. 181, 1351(1969).CrossRefGoogle Scholar
17 Park, M., Maria, J-P., Cuomo, J. J., Chang, Y. C., Muth, J. F., Kolbas, R. M., Nemanich, R. J., Carlson, E., Bumgarner, J., Appl. Phys. Lett. 81, 1797 (2002).CrossRefGoogle Scholar
18 Irmer, G., Toporov, V. V., Bairamov, B. H., Monecke, J., Phys. Status. Solidi. B 119, 595 (1983).CrossRefGoogle Scholar
19 Hellwege, K. H., Madelung, O., Hellege, A. M., Numerical Data and Functional Relationship in Science and Technology (Springer-Verlag, New York, 1987).Google Scholar