Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T09:42:36.107Z Has data issue: false hasContentIssue false

Raman Scattering and Photoluminescence of Spontaneously Ordered Ga0.5In0.5P Alloy

Published online by Cambridge University Press:  15 February 2011

G. H. Li
Affiliation:
National Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
Z. X. Liu
Affiliation:
National Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
H. X. Han
Affiliation:
National Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
Z. P. Wang
Affiliation:
National Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
J. R. Dong
Affiliation:
Laboratory for Material Scientific, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Z. G. Wang
Affiliation:
Laboratory for Material Scientific, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Get access

Abstract

Samples of the spontaneously ordered Ga0.5In0.5P alloys were grown by the MOCVD method on [001]-oriented GaAs substrates. The thickness of the epitaxal layer is about 2 μm. Raman scattering and photoluminescence spectra have been measured at room temperature. The result from photoluminescence measurement indicates that the direct-band gaps of the spontaneously ordered samples are lower than that of the disordered sample. Three scattering peaks have been observed in the Raman spectra, corresponding to the GaP-like LO, InP-like LO and InP-like TO modes in the alloys, respectively. The frequencies of the GaP- and InP-like LO modes increase with the decrease of the band-gap of the ordered alloys. It is related to the formation of the (GaP)1/(InP)1 monolayer superlattice along [111] direction in the ordered alloys. The polarization properties of the ordered alloys are similar to those of the bulk III-V semiconductors with the zinc-blende structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fujii, H., Ueno, Y., Gomyo, A., Endo, K. and Suzuki, T., Appl. Phys. Lett. 61, 1959 (1992).Google Scholar
2.Huang, K.H., Yu, J.G., Kuo, C.P., Fletcher, R.M., Osentowski, T.D., Stinson, L.J., Craford, M.G. and Suzuki, T., Appl. Phys. Lett. 61, 1045 (1992).Google Scholar
3.Bertness, K.A., Kurtz, S.R., Friedman, D.J., Kibbler, A.E., Kramer, C. and Olson, J.M., Appl. Phys. Lett. 65, 989 (1994).Google Scholar
4.Schneider, R.P., Jones, E.D., and Follstaedt, D.M., Appl. Phys. Lett. 65, 587 (1994).Google Scholar
5.Suzuki, T., Gomyo, A., Iijima, S., Kobayashi, K., Kawata, S., Hino, I., and Yuasa, T., Jpn. J. Appl. Phys. 27, 2098 (1988)Google Scholar
6.Kondow, M., Kakibayashi, H., Minagawa, S., Inoue, Y., Nishino, T. and Hamakawa, Y., Appl. Phys. Lett. 53, 2053 (1988).Google Scholar
7.Mascarenhas, A., Kurtz, S., Kibbler, A. and Olson, J.M., Phys. Rev. Lett. 63, 2108 (1989).Google Scholar
8.Kurtz, S.R., J. Appl. Phys. 74, 4130 (1993).Google Scholar
9.Wei, S.H. and Zunger, A., Appl. Phys. Lett. 56, 662 (1990).Google Scholar
10.Lucovsky, G., Brodsky, M.H., Chen, M.F., Chicotka, R.J., and Ward, A.T., Phys. Rev. B4, 1945 (1971).Google Scholar
11.Beserman, R., Hirlimann, C., Balkanski, M., and Chevallier, J., Solid State Commun. 20, 485 (1976).Google Scholar
12.Jahne, E., Pilz, W., Giehler, M., and Hildish, L., Phys. Stat. Sol. (b) 91, 155 (1979).Google Scholar
13.Bedel, E., Carles, R., Landa, G., and Renucci, J.B., Rev. Phys. Appl. 19, 17 (1984).Google Scholar
14.Jusserand, B. and Slempkes, S., Solid State Commun. 49, 95 (1984).Google Scholar
15.Kato, T., Matsumoto, T. and Ishida, T., Jpn. J. Appl. Phys. 27, 983 (1988).Google Scholar
16.Kondow, M. and Minagawa, S., J. Appl. Phys. 64, 793 (1988).Google Scholar
17.Kubo, M., Mannoh, M., and Narusawa, T., J. Appl. Phys. 66, 3767 (1989).Google Scholar
18.Alsina, F., Mestres, N., Pascual, J., Geng, C., Ernsa, P. and Scholz, F., Phys. Rev. B53, 12994 (1996).Google Scholar
19.Mintairov, A.M. and Melehin, V.G., Semicond. Sci. Technol., 11, 904 (1996).Google Scholar
20.Dong, J.R., Liu, X.L., Lu, D.C., Wang, D. and Wang, Z.G., Chin. J. Semicond. to be published.Google Scholar
21.Lee, H., Biswas, D., Klein, M.V., Morkoc, H., Aspnes, D.E., Choe, B.D., Kim, J., and Griffiths, C.O., J. Appl. Phys. 75, 5040 (1994).Google Scholar
22.Huang, K., Zhu, B.F., and Tang, H., Phys. Rev. B41, 5825 (1990).Google Scholar
23.Sood, A.K., Menendez, J., Cardona, M., and Ploog, K., Phys. Rev. Lett. 54, 2111 (1985).Google Scholar
24.Wang, Z.P., Jiang, D.S., and Ploog, K., Solid State Commun. 65, 661 (1988).Google Scholar
25.Calle, F., Mowbray, D.J., Niles, D.W., Cardona, M., Calleja, J.M. and Ploog, K., Phys. Rev. B43, 5904 (1991).Google Scholar
26.Mooradian, A. and Wright, G.B., Solid State Commun. 4, 431 (1966).Google Scholar
27.Landolt-Bornstein Vol. 17a, edited by Madelung, O. (Springer, Heiderberg, 1982), p. 209.Google Scholar
28.Abdelouhab, R.M., Braunstein, R., Rao, M.A. and Kroemer, H., Phys. Rev. B39, 5857 (1989).Google Scholar
29.Wang, Z.P., Han, H.X., Li, G.H., Jiang, D.S. and Ploog, K., Phys. Rev. B43, 12650 (1991).Google Scholar