No CrossRef data available.
Published online by Cambridge University Press: 21 February 2011
GaAs (100) samples with multiple δ-doped layers (N2D=∼2×1013/cm2) were studied by Raman scattering (RS) and spectroscopic ellipsometry (SE). A quasithree- dimensional (3D) plasmon-phonon coupled mode (L+), probed at λ= 514.5 nm, from a 9-layer δ-doped GaAs with layer-spacing of 100 Å, was observed at ∼895 cm−1. At similar frequency, a plasmon mode was also detected from another GaAs sample with the same δ-doping periods but doubled layer-spacing (200 Å). This provides evidence of spatial quantization of the electron distributions in δ-doped GaAs. The equivalent 3D electron concentration, estimated from the Raman plasmon mode, is ∼1.1×1019/cm3. The presence of the 3D plasmon mode from a quasi-two-dimensional (2D) electron gas is possibly contributed by the electrons in the high energy subbands in the V-shaped potential well of the δ-doped GaAs. The pseudodielectric function <ε>= <ε1>+i<ε2> of this δ-doped GaAs sample was measured by spectroscopic ellipsometry (SE), from an unoxidized surface in an ultrahigh vacuum (UHV) chamber, in the range of 1.5 to 5.0 eV. Compared with uniformly doped GaAs, our SE data indicates a reduced broadening of the optical transitions between the E1 and E1+Δ1, energies due to the δ-doping.