Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:53:09.572Z Has data issue: false hasContentIssue false

Radio-Frequency Impedance Analysis of Anodic Tantalum Pentoxide Thin Films

Published online by Cambridge University Press:  17 March 2011

S. Due~as
Affiliation:
Dept. Electricidad y Electrónica, ETSI Telecomunicación, Universidad de Valladolid, Campus Miguel Delibes, s/n, 47011 Valladolid (Spain).
H. Castãn
Affiliation:
Dept. Electricidad y Electrónica, ETSI Telecomunicación, Universidad de Valladolid, Campus Miguel Delibes, s/n, 47011 Valladolid (Spain).
J. Barbolla
Affiliation:
Dept. Electricidad y Electrónica, ETSI Telecomunicación, Universidad de Valladolid, Campus Miguel Delibes, s/n, 47011 Valladolid (Spain).
R.R. Kola
Affiliation:
Bell Laboratories, Lucent Technologies, 700 Mountain Ave., Murray Hill, NJ 07974, (USA)
P.A. Sullivan
Affiliation:
Bell Laboratories, Lucent Technologies, 700 Mountain Ave., Murray Hill, NJ 07974, (USA)
Get access

Abstract

Anodic tantalum pentoxide is studied up to 3 GHz by using for the first time the Radio-Frequency Impedance Analysis. Over this broad frequency range we extract a better knowledge on the very physical nature of this dielectric. From impedance analysis we obtain the value of the leakage conductance in parallel to the pure capacitance. At frequencies higher than 1 MHz capacitance vanishes to zero. This behaviour appears for all the samples, independently of thickness, anodization precursor or electrode metals, suggesting that it should be due to some intrinsic property of the dielectric. The electrical response of amorphous tantalum oxide is due to dipole oscillations characterized by a constant time; when frequency is high enough, dipoles do not have time to follow the field oscillations and, as a consequence, there is not any capacitive behaviour.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dueñas, S., Castán, H., Barbolla, J., Kola, R. R. and Sullivan, P. A., J.Mater. Science: Materials in Microelectronics, 10, 379 (1999).Google Scholar
2. Dueñas, S., Castán, H., Barbolla, J., Kola, R. R. and Sullivan, P. A., Mat. Res. Symp. Proc. vol. 567, 371 (1999).Google Scholar
3. Dueñas, S., Castán, H., Barbolla, J., Kola, R. R. and Sullivan, P. A., J.Mater. Science: Materials in Microelectronics 12, 317 (2001).Google Scholar
4. Dueñas, S., Castán, H., Barbolla, J., Kola, R.R. and Sullivan, P.A., Solid-State Electron. 45, 1441 (2001).Google Scholar
5. Hiroshi Haruta Ltd, Agilent Technologies Impedance Measurement Handbook, 2nd Edition, (Agilent Technologies Co., 2000).Google Scholar
6. Jonscher, A., Physics of Thin Films 11, 205 (1980).Google Scholar