No CrossRef data available.
Article contents
Radiochemical Synthesis of Au/Iron-oxide Composite Nanoparticles Using PEG
Published online by Cambridge University Press: 01 February 2011
Abstract
Composite nanoparticles consisting of gold and iron-oxide were radiochemically synthesized in aqueous solution systems by using polyethylene glycols. The gold particles with average diameter of 3 nm were firmly immobilized on the surface of the support iron-oxide nanoparticles. The composite nanoparticles specifically adsorbed sulfur-containing amino acids by a Au-S bonding.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2008
References
REFERENCES
2.
Pankhurst, Q. A., Connolly, J., Jones, S. K. & Dobson, J., J. Phys. D: Appl. Phys., 36, R167–181 (2003).Google Scholar
3.
Nishimura, K., Hasegawa, M., Ogura, Y., Nishi, T., Kataoka, K., Handa, H., Abe, M., J. Appl. Phys.
91, 8555 (2002).Google Scholar
4.
Mornet, S., Vasseur, S., Grasset, F. & Duguet, E., J. Mater. Chem., 14, 2161–2175 (2004).Google Scholar
5.
Ito, A., Shinkai, M., Honda, H. & Kobayashi, T., J. Biosci. Bioeng, 100, 1–11 (2005).Google Scholar
7.
Gref, R., Dombb, A., Quelled, P., Blunk, T., Miillerd, R.H., Verbavatz, J.M. and Langerf, R., Advanced Drug Delivery Reviews
16, 215–233 (1995).Google Scholar
8.
Lee, H., Lee, E., Kim, D. K., Jang, N. K., Jeong, Y. Y. and Jon, S., J. AM. CHEM. SOC., 128, 7383–7389 (2006).Google Scholar
9.
Caruntu, D., Cushing, B. L., Caruntu, G. and O'Connor, C. J., Chem. Mater.
17, 3398–3402 (2005).Google Scholar
10.
Ban, Z., Barnakov, Y. A., Li, F., Golub, V. O. and O'Connor, C. J., J. Mater. Chem., 15, 4660–4662 (2005).Google Scholar
11.
Wang, L., Luo, J., Fan, Q., Suzuki, M., Suzuki, I. S., Engelhard, M. H., Lin, Y., Kim, N., Wang, J. Q., and Zhong, C. J., J. Phys. Chem. B, 109, 21593–21601 (2005)Google Scholar
12.
Chen, M., Yamamuro, S., Farrell, D., and Majeticha, S. A., J. Appl. Phy., 93, 7551 (2003)Google Scholar
13.
Mirkin, C. A., Letsinger, R. L., Mucic, R. C. and Strhoff, J. J., Nature, 382, 607–609 (1996).Google Scholar
15.
Seino, S., Kinoshita, T., Otome, Y., Okitsu, K., Nakagawa, T. and Yamamoto, T. A., Chem. Lett., 32, 690–691 (2003).Google Scholar
16.
Seino, S., Kinoshita, T., Otome, Y., Maki, T., Nakagawa, T., Okitsu, K., Mizukoshi, Y., Nakayama, T., Sekino, T., Niihara, K., Yamamoto, T.A., Scripta Materialia
51, 467–472 (2004).Google Scholar
17.
Kinoshita, T., Seino, S., Mizukoshi, Y., Nakagawa, T., Yamamoto, T. A.
Journal of Magn. and Magn. Mater., 311
255–258 (2007).Google Scholar
18.
Seino, S., Kusunose, T., Sekino, T., Kinoshita, T., Nakagawa, T., Kakimi, Y., Kawabe, Y., Iida, J., Yamamoto, T. A. and Mizukoshi, Y., J. Appl. Phys., 99, 08H101 (2006).Google Scholar
19.
Niemeyer, C. M., Mirkin, C. A., Nanobiotechnology (WILEY-VCH Verlag GmbH & Co., KGaA, Weinheim, 2004) p.36
Google Scholar
20.
Lee, H., Lee, E., Kim, D. K., Jang, N. K., Jeong, Y. Y., Jon, S., J. Am. Chem. Soc., 128, 7383–7389 (2006).Google Scholar
22.
Seino, S., Kinoshita, T., Nakagawa, T., Kojima, T., Taniguchi, R., Okuda, S. and Yamamoto, T. A., J. Nanoparticle Res., 10, 1071–1076 (2008).Google Scholar