Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T23:24:02.978Z Has data issue: false hasContentIssue false

Radiation-induced structural changes, percolation effects and resistance to amorphization by radiation damage

Published online by Cambridge University Press:  01 February 2011

Kostya Trachenko
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK, e-mail [email protected] Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, CB3 OHE, UK
Martin T Dove
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK, e-mail [email protected]
Miguel Pruneda
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK, e-mail [email protected]
Emilio Artacho
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK, e-mail [email protected]
Ekhard Salje
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK, e-mail [email protected]
Thorsten Geisler
Affiliation:
Institut für Mineralogie, University of Munster, Corrensstrasse 24, D-48149 Munster, Germany
Ilian Todorov
Affiliation:
Computational Science and Engineering Department, CCLRC Daresbury Laboratory, Daresbury, Warrington, WA44AD, UK
Bill Smith
Affiliation:
Computational Science and Engineering Department, CCLRC Daresbury Laboratory, Daresbury, Warrington, WA44AD, UK
Get access

Abstract

We combine simulation, theoretical and experimental results to study radiation damage effects in complex oxides under irradiation. In zircon, we study large density variations in the damaged structure, and show how damage percolation results in the enhanced transport extending to macroscopic lengthscale, and suggest that percolation threshold serve as a benchmark for acceptable waste load in a waste form. In perovskite, we identify common defects in the damaged structure, and relate their stability to chemical bonding. Finally, we formulate the criterion for resistance to amorphization by radiation damage: a material is amorphizable if it is able to form a covalent network.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Radioactive waste forms for the future, ed. Lutze, W. and Ewing, R.c. (Elsevier Science Publishers, 1988).Google Scholar
[2] Ewing, R. C., Lutze, W. and Weber, W. J., J. Mater. Res. 10, 243 (1995).Google Scholar
[3] Farnan, I. and Salje, E. K. H., J. Appi. Phys. 89, 2084 (2001).Google Scholar
[4] Rios S, S., Salje, E. K. H., Zhang, M. and Ewing, R. C., J. Phys.: Cond. Matt. 12, 2401 (2000).Google Scholar
[5] Trachenko, K., Dove, M. T. and Salje, E. K. H., Phys. Rev. B 65, 180102(R) (2002).Google Scholar
[6] For review, see Zallen, R. The Physics of Amorphous Solids (John Wiley and Sons, 1983).Google Scholar
[7] Geisler, T., Trachenko, K., Rios, S., Dove, M. T. and Salje, E. K. H., J. Phys.: Cond. Matt. 15, 597 (2001).Google Scholar
[8] Geisler, T., Rashwan, A. A., Rahn, M., Poller, U., Zwingmann, H., Pidgeon, R. T. and Schleicher, H., Min. Mag. 67, 485 (2003).Google Scholar
[9] Lorenz, B., Orzall, I. and Heuer, H. O., J. Phys. A: Math. Gen. 26, 4711 (1993);Google Scholar
Consiglio, R, Baker, D. R., Paul, G. and Stanley, H. E., Physica A 319, 49 (2003).Google Scholar
[10] Trachenko, K., Dove, M. T. and Salje, E. K. H. J. Phys.: Cond. Matt. 13, 1947 (2001);Google Scholar
Trachenko, K., Dove, M. T. and Salje, E. K. H., J. Phys.: Cond. Matt. 15 1, (2003).Google Scholar
[11] Rios, S. and Salje, E. K. H., submitted.Google Scholar
[12] Smith, W. and Forester, T. R., J. Mol. Graph. 14, 136 (1996).Google Scholar
[27] Li, J., Simul. Mater. Sci. Eng. 11, 173 (2003).Google Scholar
[14] Bacon, D. J., Computer Simulation in Materials Science, ed. by Kirchner, H. O. et al (Kluwer, Dordrecht, 1996).Google Scholar
[15] Wang, L. M. and Birtcher, R. C., Phil. Mag. A, 64, 1209 (1991).Google Scholar
[16] Kucheyev, S. O., Williams, J. S., Jagadish, C., Zou, J., Craig, V. S. J. and Li, G., Appi. Phys. Lett. 77, 1455 (2000);Google Scholar
Kucheyev, S. O., Williams, J. S., Zou, J., Jagadish, C. and Li, G., Appi. Phys. Lett. 77, 3577 (2000).Google Scholar
[17] New Kinds of Phase Transitions: Transformations in Disordered Substances, Ed. by Brazhkin et al, V. V. (Kluwer, Dordrecht, 2002).Google Scholar
[18] Trachenko, Κ., Pruneda, M., Artacho, E. and Dove, M. T., submitted.Google Scholar
[19] Ringwood, A. E., Kesson, S. E., Ware, N. G., Hibberson, W. O. and Major, A., Ceochem. J. 13, 141 (1979);Google Scholar
Ringwood, A. E., Kesson, S. E., Ware, N. G., Hibberson, W. O. and Major, A., Nature 278, 219 (1979).Google Scholar
[20] Karioris, F. G., Appaji Gupta, K., Cartz, L. and Labbe, J. C., J. Nucl Mater. 108, 748 (1982);Google Scholar
Mitamura, H., Matsumoto, S., Hart, K. P., Miyazaki, T., Vanee, E. R., Togashiand, Y. and White, J., J. Am. Ceram. Soc. 75, 392 (1992);Google Scholar
Hough, A. and Marples, J. A. C., The radiation stability of SYNROC: final report, ANSTO report 1993;Google Scholar
Smith, K. L., Zaluzec, N. J. and Lumpkin, G. R., J. Nucl. Mater. 250, 36 (1997);Google Scholar
Meldrum, A., Boatner, L. A., Weber, W. J. and Ewing, R. C, J. Nucl Mater. 300, 242 (2002).Google Scholar
[21] Note that the simulated event effectively corresponds to the energy that is higher than that of recoil nucleus in a- decay, since in the experiment the energy transfer also includes electronic energy loss process, leading to a larger size of the damaged region.Google Scholar
[22] Nordlund, K., Runeberg, N. and Sundholm, D., Nuci. Instr. and Meth. in Phys. Res. B 132, 45 (1997).Google Scholar
[23] Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P. and Sánchez-Portal, D., J. Phys.: Condens. Matter 14, 2745 (2002);Google Scholar
Ordejon, P., Artacho, E. and Soler, J. M., PRB 53, 10441 (1996).Google Scholar
[24] Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964);Google Scholar
Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965).Google Scholar
[25] Pruneda, M. and Artacho, E., submitted.Google Scholar
[26] Calleja, M., Dove, M. T. and Salje, E. K., J. Phys.: Cond. Matt. 15, 2301 (2003).Google Scholar
[27] Li, J., Modelling Simul. Mater. Sci. Eng. 11, 173 (2003).Google Scholar
[28] For review, see Trachenko, K., Artacho, E. and Dove, M. T., submitted.Google Scholar
[29] Rubia, T. Diaz de la, Averback, R. S., Benedeck, R. and King, W. E., Phys. Rev. Lett. 59, 1930 (1987).Google Scholar
[30] Sickafus, K. E. et al, J. Nucl Mater 274, 66 (1999);Google Scholar
Wang, S. X., Wang, L. M., Ewing, R. C. and Doremus, R. H., J. Non.-Cryst. Sol. 238, 198 (1998).Google Scholar
[31] Phillips, J. C., Rev. of Mod. Phys. 42, 317 (1970).Google Scholar
[32] Hobbs, L. W., Nucl. Meth. in Phys. Res. B. 91, 30 (1994); J. Non.-Cryst. Sol. 182, 27 (1995).Google Scholar
[33] Phillips, J. C., Phys. Rev. B 29, 5683 (1984).Google Scholar
[34] Kucheyev, S. O., Williams, J. S., Jagadish, C., Zou, J. and Li, G., Phys. Rev. B 62, 7510 (2000);Google Scholar
Kucheyev, S. O. et al, Phys. Rev. B 67, 094115 (2003).Google Scholar
[35] Pauling, L., The nature of the chemical bond (Cornell University Press, 1960).Google Scholar