Article contents
Radiation-Induced Nanostructures in an Iron Phosphate Glass
Published online by Cambridge University Press: 01 February 2011
Abstract
Electron and ion irradiation-induced nanostructures in an iron phosphate glass with a composition of 45 mol%Fe2O3-55 mol%P2O5 have been characterized by advanced electron microbeam techniques. Analysis by energy-filtered transmission electron microscopy indicated that Fe-rich and P-rich nanophases were formed when the glass was irradiated under a broad (with a diameter of 1.2μm) electron beam [give the dose range]. Phase separation developed with the increase in electron dose (from 1.0×1026e/m2 to 4.8×1026e/m2) as a result of the formation of an Fe-rich phase and pure P-phase. The formation of the Fe-rich and the P-phases are thought to be due to mainly ionization process. Under a low energy ion beam irradiation, Fe/FeO nanoparticles were formed, as confirmed by selected-area electron diffraction analysis. However, no nanoparticles were observed under a high-energy high-dose ion irradiation. The ion beam-irradiation results suggest that the formation of the Fe/FeO nanoparticles was due to preferential sputtering during ion irradiation and that the nanoparticles lie within the surface layers of the glass.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2004
References
REFERENCES
- 5
- Cited by