Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T17:49:59.909Z Has data issue: false hasContentIssue false

Radiation Response of Thin Oxides Grown By Rapid Thermal Oxidation and Rapid Thermal Annealing Techniques

Published online by Cambridge University Press:  22 February 2011

W. K. Schubert
Affiliation:
Sandia National Laboratories Albuquerque, NM 87185
C. H. Seager
Affiliation:
Sandia National Laboratories Albuquerque, NM 87185
Get access

Abstract

High quality, 20 to 30 nm thick SiO2 films were grown using rapid thermal oxidation techniques. Metal-oxide-semiconductor (MOS) capacitors formed with these oxides were characterized electrically using low and high frequency capacitance measurements. The effects of post oxidation annealing (POA) ambient, temperature and duration on the initial oxide properties and the radiation response of the MOS capacitors were determined. The addition of a small amount of O2 to the POA ambient significantly reduced the radiation induced hole trapping and interface state creation, particularly for the higher POA temperatures. In addition, annealing and reirradiation experiments were carried out and showed that both the trapped charge and interface state buildup were completely reversible after anneals at 400°C. This repeatability argues against interface state creation models which involve irreversible changes in the atomic arrangements near the interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. For a review of much of this literature see: MOS (Metal-Oxide-Semiconductor) Physics and Technology, by Nicollian, E. H. and Brews, J. R., (John Wiley and Sons, New York, 1982) pp. 549577 or see the December issues of IEEE Trans. Nucl. Sci. from 1966 to the present.Google Scholar
2. Weinberg, Z. A., Young, D. R., Calise, J. A., Cohen, S. A., DeLuca, J. C. and Deline, V. R., Appl. Phys. Lett. 45, 1204 (1984).CrossRefGoogle Scholar
3. Hofmann, K., Young, D. R. and Rubloff, G. W., J. Appl. Phys. 62, 925 (1987).CrossRefGoogle Scholar
4. Razouk, R. R. and Deal, B. E., J. Electrochem. Soc. 126, 1573 (1979).CrossRefGoogle Scholar
5. Deal, B. E., J. Electrochem. Soc. 121, 198c (1974).CrossRefGoogle Scholar
6. Johnson, W. C., IEEE Trans. Nucl. Sci. NS–22, 2144 (1975).CrossRefGoogle Scholar
7. Woods, M. H. and Williams, R., J. Appl. Phys. 47, 1082 (1976).CrossRefGoogle Scholar
8. Lenahan, P. M. and Dressendorfer, P. V., Appl. Phys. Lett. 44, 96 (1984).CrossRefGoogle Scholar
9. Witham, H. S. and Lenahan, P. M., Appl. Phys. Lett. 51, 1007(1987).CrossRefGoogle Scholar
10. Takahashi, T., Triplett, B. B., Yokogawa, K. and Sugano, T., Appl. Phys. Lett. 51, 1334 (1987).CrossRefGoogle Scholar
11. Schwank, J. R., Fleetwood, D. M., Winokur, P. S., Dressendorfer, P. V., Turpin, D. C. and Sanders, D. T.,, IEEE Trans. Nucl. Sci., December (1987), to be published.Google Scholar
12. Winokur, P. S., Errett, E. B., Fleetwood, D. M., Dressendorfer, P. V. and Turpin, D. C., IEEE Trans. Nucl. Sci. NS–32, 3954 (1985).Google Scholar
13. Schwank, J. R., Fleetwood, D. M., Winokur, P. S., Hund, P. K. and DasKalos, E. C., J. Radiation Effects; Research and Engineering, 5, to be published.Google Scholar
14. Revesz, A. G., IEEE Trans. Nucl. Sci. 24, 2102 (1977).CrossRefGoogle Scholar
15. Hu, G. and Johnson, W., Appl. Phys. Lett. 36, 590 (1981).CrossRefGoogle Scholar
16. Lai, S. K., J. Appl. Phys. 54, 2540 (1983).CrossRefGoogle Scholar
17. Chang, S. T., Wu, J. K. and Lyon, S. A., Appl. Phys. Lett. 48, 662 (1986).CrossRefGoogle Scholar
18. Sung, J. M. and Lyon, S. A., Appl. Phys. Lett. 0, 1152 (1987).CrossRefGoogle Scholar
19. Sabnis, A. G., IEEE Trans. Nucl. Sci., NS–30, 4094 (1983).CrossRefGoogle Scholar
20. Kern, W. and Puotinen, D. A., RCA Rev. 31, 187 (1970).Google Scholar
21. Terman, E. M., Solid State Electron. 5, 295 (1962).CrossRefGoogle Scholar
22. Castagne, R. and Vapaille, A., Surf. Sci. 28, 557 (1971).CrossRefGoogle Scholar
23. McGarrity, J. M., Winokur, P. S., Boesch, H. E. Jr., and McLean, F. B. in The Physics of SiO2 and Its Interfaces, ed. Pantelides, S. T. (Pergamon, New York, 1978) p. 428.CrossRefGoogle Scholar
24. Winokur, P. S. and Boesch, H. E. Jr., IEEE Trans. Nucl. Sci. NS–27, 1647 (1980).CrossRefGoogle Scholar
25. McLean, F. B., IEEE Trans. Nucl. Sci. NS–27, 1651 (1980).CrossRefGoogle Scholar
26. Griscom, D. L., J, Appl. Phys. 58, 2524 (1985).CrossRefGoogle Scholar
27. Lenahan, P. M. and Dressendorfer, P. V., J. Appl. Phys. 55, 3495 (1984).CrossRefGoogle Scholar
28. Grunthaner, F. J., Grunthaner, P. J., Vasquez, R. P., Lewis, B. F. and Maserjian, J., Phys. Rev. Lett. 43, 1683 (1979).CrossRefGoogle Scholar
29. Grunthaner, F. J., Lewis, B. F., Zamani, N. and Maserjian, J., IEEE Trans. Nucl. Sci. NS–27, 1640 (1980).CrossRefGoogle Scholar
30. Grunthaner, F. J., Grunthaner, P. J. and Maserjian, J., IEEE Trans. Nucl. Sci. NS–29, 462 (1982).Google Scholar
31. Grunthaner, F. J. and Grunthaner, P. J., Mat. Sci. Rep. 1, 69 (1986).CrossRefGoogle Scholar