Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T01:50:07.584Z Has data issue: false hasContentIssue false

Radiation Response of a 12YWT Nanostructured Ferritic Steel

Published online by Cambridge University Press:  31 January 2011

Michael Miller
Affiliation:
[email protected], Oak Ridge National Laboratory, MSTD, Oak Ridge, Tennessee, United States
David Hoelzer
Affiliation:
[email protected], United States
Kaye F. Russell
Affiliation:
[email protected], Oak Ridge National Laboratory, MSTD, Oak Ridge, Tennessee, United States
Get access

Abstract

In order to evaluate the radiation response of 12YWT nanostructured ferritic steel to high dose neutron irradiation, the solute distribution, and size, number density, and compositions of nanoclusters in the unirradiated condition and after neutron irradiation to a dose of 3 dpa at a controlled temperature of 600 °C were estimated by atom probe tomography. No statistical difference in the average size or size distribution of the nanoclusters was found between the unirradiated and irradiated conditions. Therefore, these nanostructured ferritic steels are promising candidate materials for use under extreme conditions in future generations of advanced reactors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Miller, M.K. Fu, C.L. Krcmar, M. Hoelzer, D.T. and Liu, C.T. Shanghai Metallic Material Magazine, 30 (4) 2008 16, and Frontiers of Mater. Sci. in China, 3(1), 9(2009).Google Scholar
2. Larson, D. J. Maziasz, P. J. Kim, I.-S., Miyahara, K. Scr. Mater. 44, 359(2001).Google Scholar
3. Miller, M.K. Kenik, E.A. Russell, K.F. Heatherly, L. Hoelzer, D.T. and Maziasz, P.J. Mater. Sci. Eng. A., A353, 140(2003).Google Scholar
4. Schneibel, J. H. Liu, C.T. Miller, M.K. Mills, M.J. Sarosi, P. Heilmaier, M. and Sturm, D. Scr. Mater., 61, 793(2009).Google Scholar
5. Pareige, P. Miller, M.K. Hoelzer, D.T. Radiguet, B. Cadel, E. and Stoller, R.E. J. Nucl. Mater., 360, 136(2007).Google Scholar
6. Allen, T.R. Gan, J. Cole, J.I. Miller, M.K. Busby, J.T. Ukai, S. Ohtsuka, S. Shutthanandan, S. and Thevuthasan, S. J. Nucl. Mater., 375, 26(2008).Google Scholar
7. Miller, M.K. Russell, K.F. Thompson, K. Alvis, R. and Larson, D.J. Microscopy and Microanalysis, 13(6), 428(2007).Google Scholar
8. Hyde, J.M. and English, C.A. in Microstructural Processes in Irradiated Materials, edited by Lucas, G.E. Snead, L. Kirk, M.A. Jr. , Elliman, R.G. (Mater. Res. Soc. Symp. Proc. 650, Pittsburgh, PA, 2001) pp. R6.6.1.Google Scholar
9. Hellman, O.C. Vandenbroucke, J.A. Rüsing, J., Isheim, D. and Seidman, D.N. Microscopy and Microanalysis, 6, 437(2000).Google Scholar