Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:33:46.141Z Has data issue: false hasContentIssue false

Radiation resistance of nano-structured tungsten-rhenium sheet

Published online by Cambridge University Press:  29 April 2013

David E.J. Armstrong
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 4JF, United Kingdom,
Steve G. Roberts
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 4JF, United Kingdom,
Get access

Abstract

Tungsten is one the most important material for both plasma facing and structural applications in current designs for advanced divertors. Recent work has shown that composites can be manufactured from nanostructured tungsten foils which show significantly higher toughness than monolithic tungsten, but there is no data on the radiation resistance of such materials. In this study W-5 wt% Re foil in both an as rolled and annealed condition was implanted with 2MeV W+ ions to two damage levels, 0.07 and 0.4 dpa. The change in hardness was measured using nanoindentation. An increase in hardness was seen in both materials at both damage levels, with more hardening seen for the 0.4 dpa implanted samples. However the increase in hardness due to ion implantation was 2.6 times higher in the annealed material as compared to the as rolled material. This is due to the smaller grain size and higher dislocation density providing more sinks for the irradiation produced defects in the as rolled material as compared to the annealed material. Thus showing that unannealed tungsten foils are superior for use in applications in which they will see significant levels of radiation damage.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Rieth, M., Journal of Nuclear Materials 417 (1-3), 463 (2011); M. Rieth, S. L. Dudarev, S. M. Gonzalez de Vicente, J. Aktaa, T. Ahlgren, S. Antusch, D. E. J. Armstrong, M. Balden, N. Baluc, M. F. Barthe, W. W. Basuki, M. Battabyal, C. S. Becquart, D. Blagoeva, H. Boldyryeva, J. Brinkmann, M. Celino, L. Ciupinski, J. B. Correia, A. De Backer, C. Domain, E. Gaganidze, C. García-Rosales, J. Gibson, M. R. Gilbert, S. Giusepponi, B. Gludovatz, H. Greuner, K. Heinola, T. Höschen, A. Hoffmann, N. Holstein, F. Koch, W. Krauss, H. Li, S. Lindig, J. Linke, C. Linsmeier, P. López-Ruiz, H. Maier, J. Matejicek, T. P. Mishra, M. Muhammed, A. Muñoz, M. Muzyk, K. Nordlund, D. Nguyen-Manh, J. Opschoor, N. Ordás, T. Palacios, G. Pintsuk, R. Pippan, J. Reiser, J. Riesch, S. G. Roberts, L. Romaner, M. Rosiński, M. Sanchez, W. Schulmeyer, H. Traxler, A. Ureña, J. G. van der Laan, L. Veleva, S. Wahlberg, M. Walter, T. Weber, T. Weitkamp, S. Wurster, M. A. Yar, J. H. You, and A. Zivelonghi, Journal of Nuclear Materials 432 (1-3), 482 (2013).10.1016/j.jnucmat.2011.01.075CrossRefGoogle Scholar
Gilbert, M. R. and Sublet, J. C., Nuclear Fusion 51 (4), 043005 (2011).10.1088/0029-5515/51/4/043005CrossRefGoogle Scholar
Raj, B., Vijayalakshmi, M., Rao, P. R. V., and Rao, K. B. S., Mrs Bulletin 33 (4), 327 (2008).10.1557/mrs2008.67CrossRefGoogle Scholar
Armstrong, D. E. J., Yi, X., Marquis, E. A., and Roberts, S. G., Journal of Nuclear Materials 432 (1-3), 428 (2013).10.1016/j.jnucmat.2012.07.044CrossRefGoogle Scholar
Tanno, T., Hasegawa, A., Fujiwara, M., He, J. C., Nogami, S., Satou, M., Shishido, T., and Abe, K., Materials Transactions 49 (10), 2259 (2008).10.2320/matertrans.MAW200821CrossRefGoogle Scholar
Gilbert, M. R., Dudarev, S. L., Zheng, S., Packer, L. W., and Sublet, J. C., Nuclear Fusion 52 (8) (2012).10.1088/0029-5515/52/8/083019CrossRefGoogle Scholar
Yi, X., Jenkins, M. L., Briceno, M., Roberts, S. G., Zhou, Z., and Kirk, M. A., Philosophical Magazine In Press (2013).Google Scholar
Armstrong, D. E. J., Wilkinson, A. J., and Roberts, S. G., Physica Scripta T145, 014076 (2011).10.1088/0031-8949/2011/T145/014076CrossRefGoogle Scholar
Grieveson, E. M., Armstrong, D. E. J., Xu, S., and Roberts, S. G., Journal of Nuclear Materials 430 (1-3), 119 (2012).10.1016/j.jnucmat.2012.06.014CrossRefGoogle Scholar
Halliday, F. M., Armstrong, D. E. J., Murphy, J. D., and Roberts, S. G., Advanced Materials Research 59, 304 (2009).10.4028/www.scientific.net/AMR.59.304CrossRefGoogle Scholar
Heintze, C., Bergner, F., and Hernandez-Mayoral, M., Journal of Nuclear Materials 417 (1-3), 980 (2011).10.1016/j.jnucmat.2010.12.196CrossRefGoogle Scholar
Hosemann, P., Vieh, C., Greco, R. R., Kabra, S., Valdez, J. A., Cappiello, M. J., and Maloy, S. A., Journal of Nuclear Materials 389 (2), 239 (2009).10.1016/j.jnucmat.2009.02.026CrossRefGoogle Scholar
Kogler, R., Anwand, W., Richter, A., Butterling, M., Ou, X., Wagner, A., and Chen, C. L., Journal of Nuclear Materials 427 (1-3), 133 (2012).10.1016/j.jnucmat.2012.04.029CrossRefGoogle Scholar
Norajitra, P., Giniyatulin, R., Krauss, W., Kuznetsov, V., Mazul, I., Ovchinnikov, I., Reiser, J., Rieth, M., and Widak, V., Fusion Science and Technology 56 (2), 1013 (2009); P. Norajitra, L. V. Boccaccini, A. Gervash, R. Giniyatulin, N. Holstein, T. Ihli, G. Janeschitz, W. Krauss, R. Kruessmann, V. Kuznetsov, A. Makhankov, I. Mazul, A. Moeslang, I. Ovchinnikov, M. Rieth, and B. Zeep, Journal of Nuclear Materials 367, 1416 (2007).10.13182/FST09-A9043CrossRefGoogle Scholar
Reiser, J., Rieth, M., Dafferner, B., Hoffmann, A., Yi, X. O., and Armstrong, D. E. J., Journal of Nuclear Materials 424 (1-3), 197 (2012).10.1016/j.jnucmat.2012.02.030CrossRefGoogle Scholar
Reiser, J., Rieth, M., Dafferner, B., and Hoffmann, A., Journal of Nuclear Materials 423 (1-3), 1 (2012).10.1016/j.jnucmat.2012.01.010CrossRefGoogle Scholar
Reiser, J., Rieth, M., Möslang, A., Dafferner, B., Hoffmann, J., Mrotzek, T., Hoffmann, A., Armstrong, D. E. J., and Yi, X., Journal of Nuclear Materials 436 (1-3), 47 (2013).10.1016/j.jnucmat.2013.01.295CrossRefGoogle Scholar
Wurster, S. and Pippan, R., Scripta Materialia 60 (12), 1083 (2009).10.1016/j.scriptamat.2009.01.011CrossRefGoogle Scholar
Kasada, R., Takahashi, H., Kishimoto, H., Yutani, K., and Kimura, A., Pricm 7, Pts 1-3 654656, 2791 (2010).Google Scholar
Ziegler, J. F., Ziegler, M. D., and Biersack, J. P., Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 268 (11-12), 1818 (2010).Google Scholar
ASTM E521-96(2009) Standard Practice for Neutron Radiation Damage Simulation by Charged-Particle Irradiation, ASTM International, West Conshohocken, PA Google Scholar
Oliver, W. C. and Pharr, G. M., Journal of Materials Research 7 (6), 1564 (1992).10.1557/JMR.1992.1564CrossRefGoogle Scholar