Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:58:28.205Z Has data issue: false hasContentIssue false

Radiation Induced Impurity Precipitation in Mgo

Published online by Cambridge University Press:  28 February 2011

S. Clement
Affiliation:
Division de Fusion, Junta de Energia Nuclear, Madrid, Spain
E. R. Hodgson
Affiliation:
Division de Fusion, Junta de Energia Nuclear, Madrid, Spain
Get access

Abstract

In MgO irradiated at high dose rates and high temperatures with 1.8 MeV electrons, a suppression of the Fe3+ optical absorption band at 290 nm is observed. This suppression, a function of both dose rate and temperature, is consistent with a reduction process induced by oxygen displacement damage. Both thermal and radiation enhanced diffusion are involved and lead to the formation of iron containing precipitates. Similar results have been obtained for Ni2+.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Henderson, B. and Wertz, J.E., Adv. Phys. 17, 749 (1968).Google Scholar
2. Tsang, K.L. and Chen, Y., J. Appl. Phys. 54, 4531 (1983).Google Scholar
3. Davidge, R.W., J. Mat. Sci. 2, 339 (1967).Google Scholar
4. Srinivasan, M. and Stoebe, T.G., J. Appl. Phys. 41, 3726 (1970).Google Scholar
5. Ahlquist, C.N., J. Appl. Phys. 46, 14 (1975).Google Scholar
6. Modine, F.A., Sonder, E. and Weeks, R.A., J. Appl. Phys. 48, 3514 (1977).Google Scholar
7. Groves, G.W. and Fine, M.E., J. Appl. Phys. 35, 3587 (1964).Google Scholar
8. Abraham, M.M., Butler, C.T. and Chen, Y., J. Chem. Phys. 35, 3752 (1971).Google Scholar
9. Hansler, R.L. and Segelken, W.G., J. Phys. Chem. Solids 13, 124 (1960).Google Scholar
10. Abramishvili, M.G., Altukhov, V.I., Kalabegishvili, T.L. and Kva-chadze, V.G., Phys. Stat. Sol. b104, 49 (1981).Google Scholar
11. Clement, S. and Hodgson, E.R., Phys. Rev. B 30, 4684 (1984).Google Scholar
12. Blazey, K.W., J. Phys. Chem. Solids 38 671 (1977).Google Scholar
13. Sonder, E., Stratton, T.G., and Weeks, R.A., J. Chem. Phys. 70, 4603 (1979).Google Scholar
14. Abraham, M.M., Boatner, L.A., Christie, W.H., Modine, F.A., Negas, T., Bunch, R.M. and Unruh, W.P., J. Solid State Chem. 51, 1 (1985).Google Scholar
15. Doyle, W.T., Phys. Rev. III, 1067 (1958).Google Scholar
16. Pérez, A., Marest, G., Sawicka, B.D., Sawicki, J.A. and Thliszczak, T., Phys. Rev., B 28, 1227 (1983).Google Scholar
17. Bunch, R.M., Unruh, W.P. and Iverson, M.V., J. Appl. Phys. 58, 1474 (1985).Google Scholar
18. Hing, P. and Groves, G.W., J. Mat. Sci. 7, 422 (1972).Google Scholar
19. Narayan, J., Chen, Y., Moon, R.M. and Carpenter, R.W., Phil.Mag. A49, 287 (1984).Google Scholar
20. Narayan, J. and Chen, Y., Phil. Mag. A49, 475 (1984).Google Scholar
21. Oen, O.S., ORNL Report nº 3813 (1965).Google Scholar
22. Sibley, W.A. and Chen, Y., Phys. Rev.. 160, 712 (1967).Google Scholar
23. Pells, G.P., AERE Report nº 10083 (1981).Google Scholar
24. Youngman, R.A., Hobbs, L.W. and Mitchell, T.E., J. de Physique C6-Nª 7, 41, 227 (1980).Google Scholar