Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T22:57:08.137Z Has data issue: false hasContentIssue false

Radiation Enhanced Dislocation Glide and Rapid Degradation

Published online by Cambridge University Press:  16 February 2011

K. Maeda
Affiliation:
Department of Applied Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
Y. Yamashita
Affiliation:
Department of Applied Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
N Maeda
Affiliation:
The Institute for Solid State Physics, The University of Tokyo, Roppongi, Minato-ku, Tokyo, Japan
S. Takeuchi
Affiliation:
The Institute for Solid State Physics, The University of Tokyo, Roppongi, Minato-ku, Tokyo, Japan
Get access

Abstract

Conspicuous enhancement of dislocation glides under minority carrier injection is reviewed. Systematic investigation of dislocation glide velocity under electron-beam irradiation in various semiconducting crystals showed that the radiation enhanced dislocation glide (REDG) effect exhibits features expected from the recombination enhanced defect motion (REDM) mechanism. Theoretical analysis, based on the kink diffusion model for the elementary process of dislocation motion, shows that the REDG effect requires enhancement of double-kink formation. An experimental attempt provided an evidence for the smallest double kink formation is the only process that is enhanced by carrier injection. In light of the knowledge available at present, a guide line in device design to minimize degradation in the dislocation glide mode is suggested.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Ishida, K., Kamejima, T. and Matsui, J.,Appl.Phys.Lett.,31,397(1977).10.1063/1.89705Google Scholar
2 Kamejima, T., Ishida, K. and Matsui, J.,Jpn.J.Appl.Phys.,48,3950(1977).Google Scholar
3 Nakashima, H., Kishino, S., Chinone, N. and Ito, R., J. Appl. Phys.,48,2771 (1977).10.1063/1.324129Google Scholar
4 Johnston, W.D. and Miller, B.I., Appl. Phys. Lett., 23, 192 (1973).10.1063/1.1654855Google Scholar
5 Monemar, B. and Woolhouse, G.R., Appl. Phys. Lett., 29, 605 (1976).10.1063/1.89159Google Scholar
6 Chin, A.K., Keramidas, V.G., Johnston, W.D. Jr., Mahajan, S. and Roccasecca, D.D., J. Appl. Phys. 51, 987 (1980).Google Scholar
7 Fujiwara, T., Imai, H., Takagi, N. and Takusagawa, M., Appl.Phys.Lett., 33, 759 (1978).10.1063/1.90494Google Scholar
8 Iwamoto, M. and Kasami, A., Appl. Phys. Lett. 28, 591 (1976).10.1063/1.88575Google Scholar
9 Maeda, K., Ueda, O., Murayama, Y. and Sakamoto, K., J.Phys.Chem.Solids 38, 1173 (1977).10.1016/0022-3697(77)90045-2Google Scholar
10 Maeda, K. and Takeuchi, S., Jpn. J. Appl. Phys., 20,L165 (1981).10.1143/JJAP.20.L165Google Scholar
11 Maeda, K., Sato, M., Kubo, A. and Takeuchi, S., J. Appl. Phys., 54, 161(1983).10.1063/1.331725Google Scholar
12 Kuesters, K.-H. and Alexander, H., Physica 116B, 594 (1983).Google Scholar
13 Maeda, K. and Takeuchi, S., J. de Phys., 44, C4375 (1983).Google Scholar
14 Maeda, N., doctoral thesis (University of Tokyo, 1990).Google Scholar
15 Maeda, K., Suzuki, K., Ichihara, M. and Takeuchi, S., J.Appl. Phys., 56, 554 (1984).10.1063/1.333946Google Scholar
16 Kuesters, K.-H., De Cooman, B.C. and Carter, C.B., Philos.Mag.A, 53, 141 (1986)10.1080/01418618608242814Google Scholar
17 Mdivanyan, B. E. and Shikhsaidov, M.Sh., phys. stat. sol. (a), 107, 131 (1988)10.1002/pssa.2211070112Google Scholar
18 Levade, C., Couderd, J.J., Caillard, D. and Couret, A., Proc.Int.Symp. EMPFRM (Akademie Verlag, Berlin, 1989) in press.Google Scholar
19 Pilyankevich, A. N. and Britun, V.F., Phys. stat. sol. (a), 82, 449 (1984).10.1002/pssa.2210820214Google Scholar
20 Reshetov, V. I. et al. Sov. Phys. Solid State, 29, 689 (1987).Google Scholar
21 Ueda, O., Wakao, K., Yamaguchi, A., Isozumi, S. and Komiya, S., Appl. Phys. Lett., 57, 1523 (1985).Google Scholar
22 Maeda, K. and Takeuchi, S., Dislocations in Solids (Univ. Tokyo Press, Tokyo, 1984) p. 433.Google Scholar
23 Maeda, K. and Takeuchi, S., Appl. Phys. Lett., 42, 664 (1983).10.1063/1.94065Google Scholar
24 Maeda, N., Kimura, K. and Takeuchi, S., Izv. Akad. Nauk SSSR.Seriya Fizicheskaya, 51, 729 (1987).Google Scholar
25 Ueda, O., Komiya, S., Yamakoshi, S., Umebu, I. and Akita, K., Japn. J. Appl. Phys., 22, suppl.22–1, 243 (1983).10.7567/JJAPS.22S1.243Google Scholar
26 Fnaiech, M., Reynaud, F., Couret, A. and Caillard, D., Philos.Mag.A, 55, 405 (1987).10.1080/01418618708209906Google Scholar
27 Erofeeva, S.A. and Shikhsaidov, M.Sh., Proc. Int. Conf. STDCS (Elsevier, Amsterdam, 1989), in press.Google Scholar
28 Endo, K., Matsumoto, S., Kawano, H., Sakuma, I. and Kamejima, T., Appl. Phys. Lett., 40, 921 (1982).10.1063/1.92979Google Scholar
29 Ueda, O., J. Electrochemical Soc., 135, 11C (1988).10.1149/1.2095535Google Scholar
30 Weeks, J.D., Tully, J.C. and Kimerling, L.C., Phys.Rev.B, 12, 3286 (1975).10.1103/PhysRevB.12.3286Google Scholar
31 Sumi, H., Physica 116B & C, 197 (1983).Google Scholar
32 Belyavskii, V.I., Darinskii, B.M. and Sviridov, V.V., Sov. Phys. Solid State, 27, 658 (1985).Google Scholar
33 Sheinkman, M.K., JETP Lett, 38,330 (1983).Google Scholar
34 Hirth, J.P. and Lothe, J., Theory of Dislocations (McGraw-Hill, New York, 1968).Google Scholar
35 Maeda, K. and Yamashita, Y., Inst. Phys. Conf. Ser. No. 104, 269 (1989).Google Scholar
36 Maeda, N. and Takeuchi, S., Inst. Phys. Conf. Ser. No. 104, 303 (1989).Google Scholar
37 Kuesters, K.-H., De Cooman, B. C. and Carter, C.B., Philos. Mag. A, 53, 141 (1986).10.1080/01418618608242814Google Scholar
38 Farber, B. Ya, Iunin, Yu L. and Nikitenko, V.I., phys. stat. sol. (a), 97, 469 (1986).10.1002/pssa.2210970219Google Scholar
39 Maeda, K., Defects in Crystals (World Scientific, Singapore, 1988) p.153.Google Scholar
40 Maeda, K. and Yamashita, Y., Int.Phys.Conf.Ser. no.104, 269 (1989).Google Scholar
41 Vignaud, D. and Farvacque, J.L., J. Appl. Phys., 67, 281 (1990).10.1063/1.345249Google Scholar
42 Ueda, O., J. Electrochem. Soc., 135, 11C (1988).10.1149/1.2095535Google Scholar
43 Matthews, J.W. and Blakeslee, A.E., J.Crystal Growth, 27,118(1974).Google Scholar
44 Dodson, B.W. and Tsao, J.Y., Phys.Rev.B, 38, 12383 (1988).10.1103/PhysRevB.38.12383Google Scholar
45 Deppe, D. G. et al., Appl. Phys. Lett., 51, 1271 (1987)10.1063/1.98702Google Scholar
46 Houghton, D. C., Perovic, D. D., Baribeau, J.-M. and Wealtherly, G.C., J. Appl. Phys., 67, 1850 (1990).10.1063/1.345613Google Scholar