Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T00:40:32.155Z Has data issue: false hasContentIssue false

Radiation effects in Thorium Phosphate Diphosphate Th4(PO4)4P2O7. A theoretical approach

Published online by Cambridge University Press:  28 March 2012

C. Meis
Affiliation:
CEA - INSTN. Centre d’Etudes de Saclay. 91191 Gif-sur-Yvette, France.
N. Dacheux
Affiliation:
Laboratory of interfaces in materials. ICSM/LIME UMR 5257 CNRS/CEA/UM2/ENSCM, Site de Marcoule – Bât. 426 – BP 17171 Centre de Marcoule - Bât. 426. BP 17171. 30207 Bagnols-sur-Cèze Cedex. France.
Get access

Abstract

Thorium phosphate diphosphate Th4(PO4)4P2O7 (β-TPD) was already proposed for plutonium and minor actinides immobilization. Synthesis of Th4-xPux(PO4)4P2O7 with x∼1.5 corresponding to roughly 26 wt % of Pu was achieved demonstrating the thermodynamic stability of this phosphate-based material even for high plutonium mole loadings. We established reliable inter-atomic potentials in the shell-model approach for the β-TPD in order to calculate the Frenkel defects formation energies as well as the threshold displacement energies. Furthermore we carried out a detailed analysis of the energetic pathways for the corresponding Frenkel defects annealing. We deduced that the diphosphate sub-lattices may be easily displaced while the annealing mechanisms are revealed to be complex requiring highly energetic pathways, thus constituting the main defects configurations that may lead to the amorphous state.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dacheux, N., Podor, R., Brandel, V., Genet, M., J. Nucl. Mater. 252 (1998) 179186.10.1016/S0022-3115(97)00337-1Google Scholar
2. Dacheux, N. and Genet, M., Mat. Res. Soc. Symp. Proc., 556 (1999) 8592.10.1557/PROC-556-85Google Scholar
3. Robisson, A.C., Dacheux, N., Aupiais, J., J. Nucl. Mater. 306 (2002) 134146.10.1016/S0022-3115(02)01246-1Google Scholar
4. Meis, C., in “Plutonium Futures, the science” Conference transactions , American Institute of Physics, (2000) 360364.Google Scholar
5. Dacheux, N., Clavier, N., Ritt, J., J. Nucl. Mater. 349 (2006) 291303.10.1016/j.jnucmat.2005.11.009Google Scholar
6. Clavier, N., Du Fou de Kerdaniel, E., Dacheux, N., Le Coustumer, P., Drot, R., Ravaux, J., Simoni, E., J. Nucl. Mater. 349 (2006) 304316.10.1016/j.jnucmat.2005.11.010Google Scholar
7. Tamain, C., Dacheux, N., Garrido, F., Habert, A., Barré, N., Özgümüs, A., Thomé, L., J. Nucl. Mater. 358 (2006) 190201.10.1016/j.jnucmat.2006.07.007Google Scholar
8. Gale, J.D, Phil. Mag. B 73 (1996) 319.10.1080/13642819608239107Google Scholar
9. Meis, C., Gale, J. D., Boyer, L., Carpena, J., Gosset, D., J. Phys. Chem. A, 104, 22, 5380-5387.10.1021/jp000096jGoogle Scholar
10. Meis, C., J. Nucl. Mater. 289 (2001) 167176.10.1016/S0022-3115(00)00694-2Google Scholar
11. Mott, N. F., Littleton, M. J., Trans. Faraday Soc 34 (1938) 485499.10.1039/tf9383400485Google Scholar
12. Banarjee, A., Adams, N., Simons, J., Shepard, R., J. Phys. Chem. 89, (1985) 5257.10.1021/j100247a015Google Scholar
13. Levine, R. D., Bernstein, R. B., Mol. Reac. Dyn., Oxford University, New York, 1974.Google Scholar
14. Windl, W., Lenosky, T. J., Kress, J. D., Voter, A. F., Nucl. Instrum. and Meth. B 141 (1998) 6165.10.1016/S0168-583X(98)00082-2Google Scholar
15. Williford, R. E., Devanathan, R., Weber, W. J., Nucl. Instrum. and Meth. B 141 (1998), 9498.10.1016/S0168-583X(98)00066-4Google Scholar
16. Zinkle, S., Kinoshita, C., J. Nucl. Mater. 251 (1997) 200217.10.1016/S0022-3115(97)00224-9Google Scholar
17. Tamain, C., Garrido, F., Thomé, L., Dacheux, N., Özgümüs, A., Benyagoub, A. J. Nucl. Mater. 357 (2006) 206212.10.1016/j.jnucmat.2006.06.008Google Scholar