Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:15:33.680Z Has data issue: false hasContentIssue false

Radiation Effects in Nonmetals: Amorphization, Phase Decomposition, and Nanoparticles

Published online by Cambridge University Press:  15 February 2011

A. Meldrum
Affiliation:
Oak Ridge National Laboratory, Solid State Division, Oak Ridge, TN 37831-6057
L.A. Boatner
Affiliation:
Oak Ridge National Laboratory, Solid State Division, Oak Ridge, TN 37831-6057
C.W. White
Affiliation:
Oak Ridge National Laboratory, Solid State Division, Oak Ridge, TN 37831-6057
D.O. Henderson
Affiliation:
Fisk University, Department of Physics, Nashville, TN 37208
Get access

Abstract

Radiation effects in nonmetals have been studied for well over a century by geologists, mineralogists, physicists, and materials scientists. The present work focuses on recent results of investigations of the ion-beam-induced amorphization of the ABO4 compounds – including the orthophosphates (LnPO4; Ln = lanthanides) and the orthosilicates: zircon (ZrSiO4), hafnon (HfSiO4), and thorite (ThSiO4). In the case of the orthosilicates, heavy-ion irradiation at elevated temperatures causes the precipitation of a nanocrystalline metal oxide. Electron irradiation effects in these amorphized insulating ceramics can produce localized recrystallization on a nanometer scale. Similar electron irradiation techniques were used to nucleate monodispersed compound semiconductor nanocrystals formed by ion implantation of the elemental components into fused silica. Methods for the formation of novel structural relationships between embedded nanocrystals and their hosts have been developed and the results presented here demonstrate the general flexibility of ion implantation and irradiation techniques for producing unique near-surface microstructures in ion-implanted host materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Broegger, W.C., Zeit. Krist. 16, 122 (1890).Google Scholar
[2] Meldrum, A., Boatner, L.A., and Ewing, R.C., J. Mater. Res. 12, 1816 (1997).Google Scholar
[3] Meldrum, A., Zinkle, S.J., Boatner, L.A., and Ewing, R.C., Nature 395, 56 (1998).Google Scholar
[4] Krogh, T.E., Geochim. Cosmochim. Acta 46, 637 (1982).Google Scholar
[5] Heaman, L. and Parrish, R.R., in Applications of Radiogenic Isotope Systems to Problems in Geology: MAC Short Course Volume 19, edited by Heaman, L. and Ludden, J.N. (Mineralogical Association of Canada, Toronto, Ont. 1991) pp. 59102.Google Scholar
[6] Burakov, B.E., Anderson, E.B., Rovsha, V.S., Ushakov, S.V., Ewing, R.C., Lutze, W., and Weber, W.J., in Scientific Basis for Nuclear Waste Management XIX, edited by Murphy, W.M. and Knecht, D.A. (Plenum, New York, 1996), pp. 3340.Google Scholar
[7] Ewing, R.C., Lutze, W., and Weber, W.J., J. Mater. Res. 10, 243 (1995).Google Scholar
[8] Ewing, R.C., Weber, W.J., and Lutze, W., in Crystalline Ceramics: Waste Forms for the Disposal of Weapons Plutonium. NATO Workshop Proceedings, edited by Merz, E.R. and Walter, C.E. (Academic Publishers, Dordrecht, The Netherlands, 1996), pp. 6583.Google Scholar
[9] Meldrum, A., Boatner, L.A., Weber, W.J., and Ewing, R.C., Geochim. Cosmochim. Acta 62, 2509 (1998).Google Scholar
[10] Hawthorne, F.C., Groat, L.A., Raudsepp, M., Ball, N.A., Kimata, M., Gaba, R., Halden, N.M., Lumpkin, G.R., Ewing, R.C., Greegor, R.B., Lytle, F.W., Ercit, T.C., Rossman, G.R., Wicks, F.J., Ramik, R.A., Sherriff, B.L., Fleet, M.E., and McCammon, C., Am. Mineral. 76, 370 (1991).Google Scholar
[11] Pabst, A., Am. Mineral. 37, 137 (1952).Google Scholar
[12] Meldrum, A., Boatner, L.A., Zinkle, ST., Wang, S.X., Wang, L.M., and Ewing, R.C., Can. Mineral. (in press).Google Scholar
[13] Snead, L.L., Zinkle, S.J., Hay, J.C., and Osborne, M.C., Nucl. Instr. Meth. Phys. Res. B141, 123 (1998).Google Scholar
[14] Holland, H. and Gottfried, D. Acta Crystallographica 8, 291 (1955).Google Scholar
[15] Vance, E.R. and Anderson, B.W., Min. Mag. 38, 605 (1972).Google Scholar
[16] Murakami, T., Chakoumakos, B.C., Ewing, R.C., Lumpkin, G.R., and Weber, W.J., Am. Mineral. 76, 1510 (1991).Google Scholar
[17] Weber, W.J., Ewing, R.C., and Wang, L.M., J. Mater. Res. 9, 688 (1994).Google Scholar
[18] McLaren, A.C., Gerald, J.D. Fitz, and Williams, I.S., Geochim. Cosmochim. Acta 58, 993 (1994).Google Scholar
[19] Weber, W.J., Devanathan, R., Meldrum, A., Boatner, L.A., Ewing, R.C., and Wang, L.M., (these proceedings).Google Scholar
[20] Allen, C.W. and Ryan, E.A., in Microstructure Evolution during Irradiation, edited by Robertson, I.M., Was, G.S., Hobbs, L.W., and Rubia, T. Diaz de la (Mater. Res. Soc. Proc. 439, Pittsburg, PA 1997), pp.277288.Google Scholar
[21] Meldrum, A., Zinkle, ST., Boatner, L.A., and Ewing, R.C., Phys. Rev. B (in press).Google Scholar
[22] Meldrum, A., Boatner, L.A., and Ewing, R.C., Phys. Rev. B 56, 13805 (1997).Google Scholar
[23] Hobbs, L.W., Nucl. Inst. Meth. Phys. Res. B91, 30 (1994).Google Scholar
[24] Devanathan, R., Weber, W.J., Sickafus, K.E., Nastasi, M., Wang, L.M., and Wang, S.X., Nucl. Instr. Meth. Phys. Res. B141, 366 (1998).Google Scholar
[25] Miller, M.L. and Ewing, R.C., Ultramicroscopy 48, 203 (1992).Google Scholar
[26] Virk, H.S., Radiat. Eff. Def. Sol. 133, 87 (1995).Google Scholar
[27] Zinkle, S.J. and Kinoshita, C., J. Nucl. Mater. 251, 200 (1997).Google Scholar
[28] Gong, W.L., Wang, L.M., Ewing, R.C., and Zhang, J., Physical Review B 54, 3800 (1996).Google Scholar
[29] Qin, L.C. and Hobbs, L.W., J. Non-Cryst. Sol. 192&193, 456 (1995).Google Scholar
[30] Sales, B.C., Zuhr, R.A., McCallum, J.C., and Boatner, L.A, Phys. Rev. B 46, 3215 (1992).Google Scholar
[31] Wesch, W., Opferman, T., and Bachman, T., Nucl. Instr. Meth. Phys. Res. B141, 338 (1998).Google Scholar
[32] Zinkle, S.J., J. Nucl. Mater. 219, 113(1995).Google Scholar
[33] Zinkle, ST., Nucl. Instr. Meth. Phys. Res. B91, 234 (1994).Google Scholar
[34] Jencic, I. and Robertson, I.M., J. Mater. Res. 11, 2152 (1996).Google Scholar
[35] Lee, E.H., Maziasz, P.J., and Rowcliffe, A.F., in Phase Stability During Irradiation, edited by Holland, J.R., Mansur, L.K., and Potter, D.I. (TMS/AIME, New York, 1981) pp. 191218.Google Scholar
[36] Wang, L.M., Gong, W.L., Bordes, N., Ewing, R.C., and Fei, Y., in The Microstructure of Irradiated Materials, edited by Robertson, I.M. (Mater. Res. Soc. Symp. Proc. 373, Pittsburgh, PA 1995) pp. 407412.Google Scholar
[37] Wang, S.X., Wang, L.M., Ewing, R.C., and Doremus, R.H., J. Non-Cryst. Sol. 238, 198 (1998).Google Scholar
[38] Wolf, D., Okamoto, P.R., Yip, S., Lutsko, J.F., and Kluge, M., J. Mater. Res. 5, 286 (1989).Google Scholar
[39] Devanathan, R., Lam, N.Q., and Okamoto, P.R., Phys. Rev. B 48, 42 (1993).Google Scholar
[40] Devanathan, R., Weber, W.J., and Rubia, T. Diaz de la, Nucl. Instr. Meth. Phys. Res. B141, 118 (1998).Google Scholar
[41] Kirkaldy, J.S. and Young, D.J., Diffusion in the Condensed State, Institute of Metals, London, 1987.Google Scholar
[42] White, C.W., Budai, J.D., Withrow, S.P., Zhu, J.G., Sonder, E., Zuhr, R.A., Meldrum, A., Hembree, D.M., Henderson, D.O., and Prawer, S., Nucl. Instr. Meth. Phys. Res. B141, 228 (1998).Google Scholar
[43] Budai, J.D., White, C.W., Withrow, S.P., Chisholm, M.F., Zhu, J., and Zuhr, R.A., Nature 390, 384 (1997).Google Scholar
[44] Meldrum, A., White, C.W., Boatner, L.A., Anderson, I.M., Zuhr, R.A., Sonder, E., Budai, J.D., and Henderson, D.O., Nucl. Instr. Meth. Phys. Res. (in press).Google Scholar
[45] Fisher, S.B., Radiat. Eff. 5, 239 (1970).Google Scholar
[46] Meldrum, A., Zuhr, R.A., Sonder, E., Budai, J.D., White, C.W., Boatner, L.A., Ewing, R.C., and Henderson, D.O., Appi. Phys. Lett. (in press).Google Scholar
[47] Naguib, H.M. and Kelly, R., Radiat. Eff. 25, 1 (1975).Google Scholar