Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T17:59:47.092Z Has data issue: false hasContentIssue false

Radiation Effects in Glass Waste Forms for High-Level Waste and Plutonium Disposal

Published online by Cambridge University Press:  15 February 2011

W. J. Weber
Affiliation:
Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352
R. C. Ewing
Affiliation:
Dept. of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131
Get access

Abstract

A key challenge in the permanent disposal of high-level waste (HLW), plutonium residues/scraps, and excess weapons plutonium in glass waste forms is the development of predictive models of long-term performance that are based on a sound scientific understanding of relevant phenomena. Radiation effects from β-decay and α-decay can impact the performance of glasses for HLW and Pu disposition through the interactions of the α-particles, β-particles, recoil nuclei, and γ-rays with the atoms in the glass. Recently, a scientific panel convened under the auspices of the DOE Council on Materials Science to assess the current state of understanding, identify important scientific issues, and recommend directions for research in the area of radiation effects in glasses for HLW and Pu disposition. The overall finding of the panel was that there is a critical lack of systematic understanding on radiation effects in glasses at the atomic, microscopic, and macroscopic levels. The current state of understanding on radiation effects in glass waste forms and critical scientific issues are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Closing the Circle on the Splitting of the Atom (U.S. Department of Energy, Office of Environmental Management, Washington, DC, 1995).Google Scholar
2. Management and Disposition of Excess Weapons Plutonium (National Academy Press, Washington, DC, 1994).Google Scholar
3. Management and Disposition of Excess Weapons Plutonium - Reactor-Related Options (National Academy Press, Washington, DC, 1995).Google Scholar
4. Taubes, G., Science 268, 1836 (1995).Google Scholar
5. Bowman, C.D. and Venneri, F., Sci. Glob. Secur. 5, 279 (1996).Google Scholar
6. Van Konynenburg, R.A., Sci. Glob. Secur. 5, 303 (1996).Google Scholar
7. Matzke, Hj., Nucl. Instr. and Meth. B32, 453 (1988).Google Scholar
8. Weber, W.J. and Roberts, F.P., Nucl. Technol. 60, 178 (1983).Google Scholar
9. Burns, W.G., Hughes, A.E., Marples, J.A.C., Nelson, R.S., and Stoneham, A.M., J. Nucl. Mater. 107, 245 (1982); in Scientific Basis for Nuclear Waste Management V, edited by W. Lutze (North Holland, New York, 1982), p. 339.Google Scholar
10. Day, D.H., Hughes, A.E., Leake, J.W., Marples, J.A.C., Marsh, G.P., Rae, J., and Wade, B.O., Rep. Prog. Phys. 48, 101 (1985).Google Scholar
11. Weber, W.J., Nucl. Instrum. Methods in Phys. Res. B32, 471 (1988).Google Scholar
12. Weber, W.J., Minerals, J., Metals and Materials Sociery 43 (7), 35 (1991).Google Scholar
13. Wronkiewicz, D.J., Effects of Radionuclide Decay on Waste Glass Behavior - A Critical Review, ANL-93/45 (Argonne National Laboratory, Argonne, IL, 1993).Google Scholar
14. Ewing, R.C., Weber, W.J., and Clinard, F.W. Jr., Prog. Nucl. Energy 29 (2), 63 (1995).Google Scholar
15. Weber, W.J., Ewing, R.C., Angell, C.A., Arnold, G.W., Cormack, A.N., Delaye, J.M., Griscom, D.L., Hobbs, L.W., Navrotsky, A., Price, D.L., Stoneham, A.M., and Weinberg, M.C., J. Mater. Res. (submitted).Google Scholar
16. Todd, B.J., Lineweaver, J.L., and Kerr, J.T., J. Appl. Phys. 31, 51 (1960).Google Scholar
17. Lineweaver, J.L., J. Appl. Phys. 34, 1786 (1963).Google Scholar
18. Bibler, N.E., in Scientific Basis for Nuclear Waste Management, edited by Topp, S.V. (North Holland, New York, 1982), p. 681.Google Scholar
19. Marples, J.A.C., Nucl. Instrum. Methods in Phys. Res. B32, 480 (1988).Google Scholar
20. Inagaki, Y., Furuya, H., Idemitsu, K., Banba, T., Matsumoto, S., and Muraoka, S., in Scientific Basis for Nuclear Waste Management XV, edited by Sombret, C.G. (Mat. Res. Soc. Symp. Proc. 257, Pittsburgh, PA, 1992), p. 199,Google Scholar
21. Banba, T., Matsumoto, S., Muraoka, S., Yamada, K., Saito, M., Ishikawa, H., and Sasaki, N., in Scientific Basis for Nuclear Waste Management XVIII, edited by Murakami, T. and Ewing, R.C. (Mater. Res. Soc. Symp. Proc. 353, Pittsburgh, PA, 1995), p. 1397.Google Scholar
22. Antonini, M., Camagni, P., Lanza, F., and Manara, A., in Scientific Basis for Nuclear Waste Management-2, edited by Northrup, C.J.M. Jr. (Plenum Press, New York, 1980), p. 127.Google Scholar
23. Sato, S., Furuya, H., Kozaka, T., Inagaki, Y., and Tamai, T., J. Nucl. Mater. 152, 265 (1988).Google Scholar
24. Sato, S., Furuya, H., Inagaki, Y., Kozaka, T., and Sugisaki, M., J. Nucl. Sci. and Technol. 24, 920 (1987).Google Scholar
25. Sato, S., Furuya, H., Asakura, K., Ohta, K., and Tamai, T., Nucl. Instrum. Methods in Phys. Res. B 1, 534 (1984).Google Scholar
26. Arnold, G.W., in Scientific Basis for Nuclear Waste Management VIII, edited by Jantzen, C.M., Stone, J.A., and Ewing, R.C. (Mater. Res. Soc. Symp. Proc. 44, Pittsburgh, PA, 1985), p. 617.Google Scholar
27. Manara, A., Antonini, M., Camagni, P., and Gibson, P.N., Nucl. Instrum. Methods in Phys. Res. B 1, 475 (1984).Google Scholar
28. Manara, A., Gibson, P.N., and Antonini, M., in Scientific Basis for Nuclear Waste Management-V, edited by Lutze, W. (North Holland, New York, 1982), p. 349.Google Scholar
29. Devine, R. A. B., Nucl. Instrum. Methods in Phys. Res. B 91, 378 (1994).Google Scholar
30. Stoneham, A.M., Nucl. Instrum. Methods in Phys. Res. B 91, 1 (1994).Google Scholar
31. Arnold, G.W., Nucl. Instrum. Methods in Phys. Res. B 1, 516 (1984).Google Scholar
32. Arnold, G.W., Northrup, C.J.M., and Bibler, N.E., in Scientific Basis for Nuclear Waste Management-V, edited by Lutze, W. (North Holland, New York, 1982), p. 357.Google Scholar
33. Roberts, F.P., Jenks, G.H., and Bopp, C.D., Radiation Effects in Solidified High-Level Wastes - Part 1, Stored Energy, BNWL-1944 (Pacific Northwest Laboratory, Richland, WA, 1976).Google Scholar
34. Hall, A.R., Dalton, J.T., Hudson, B., and Marples, J.A.C., in Management of Radioactive Wastes from the Nuclear Fuel Cycle, Vol. II, IAEA-SM-207 (International Atomic Energy Agency, Vienna, 1976), p. 3.Google Scholar
35. Malow, G., Marples, J.A.C., and Sombret, C., in Radioactive Waste Management and Disposal, edited by Simon, R. and Orlowski, S. (Harwood Academic Publishers, Chur, Switzerland, 1980), p. 341.Google Scholar
36. Sato, S., Furuya, H., Morikawa, K., Sugisaki, M., and Inagaki, Y., J. Nucl. Sci. and Technol. 27, 343 (1990).Google Scholar
37. Turcotte, R.P., Radiation Effects in Solidified High-Level Wastes - Part 2, Helium Behavior, BNWL-2051 (Pacific Northwest Laboratory, Richland, WA, 1976).Google Scholar
38. Malow, G. and Andresen, H., in Scientific Basis for Nuclear Waste Management, Vol.1, edited by McCarthy, G.J. (Plenum Press, New York, 1979), p. 109.Google Scholar
39. , A.K., Luckscheiter, B., Lutze, W., Malow, G., and Schiewer, E., Am. Ceram. Soc. Bull. 55, 500 (1976).Google Scholar
40. DeNatale, J.F. and Howitt, D.G., Am. Ceram. Soc. Bull. 61, 582 (1982).Google Scholar
41. DeNatale, J.F. and Howitt, D.G., Nucl. Insrum. Methods in Phys. Res. B 1, 489 (1984).Google Scholar
42. DeNatale, J.F. and Howitt, D.G., Radiat. Eff. 91, 89 (1985).Google Scholar
43. Weber, W.J., Turcotte, R.P., Bunnell, L.R., Roberts, F.P., and Westsik, J.H., in Ceramics in Nuclear Waste Management, edited by Chikalla, T.D. and Mendel, J.E., CONF-790420 (National Technical Information Service, Springfield, Virginia, 1979), p. 294.Google Scholar
44. Sato, S., Asakura, K., and Furuya, H., Nucl. and Chem. Waste Management 4, 147 (1983).Google Scholar
45. DeNatale, J.F. and Howitt, D.G., Am. Ceram. Soc. Bull. 66, 1393 (1987).Google Scholar
46. Heuer, J.P., M.S. thesis, Dept. Mech. Engineering, University of California – Davis, 1987.Google Scholar
47. Howitt, D.G., Chan, H.W., DeNatale, J.F., and Heuer, J.P., J. Am. Ceram. Soc. 74, 1145 (1991).Google Scholar
48. Heuer, J.P., Chan, H.W., Howitt, D.G., and DeNatale, J.F., in Nuclear Waste Management II, edited by Clark, D.E., White, W.B., and Machiels, J.J. (Advances in Ceramics 20, The American Ceramic Society, Westerville, OH, 1986), p. 175.Google Scholar
49. DeNatale, J.F., Howitt, D.G., and Arnold, G.W., Radiat. Eff. 98, 63 (1986).Google Scholar
50. Tosten, M.H., TEM Examination of Irradiated Waste Glass, WSRC-RP 89–584 (Westinghouse Savannah River Co., Aiken, South Carolina, 1989).Google Scholar
51. Bibler, N.E., Tosten, M.H., and Beam, D.C., in High-Level Radioactive Waste Management, Vol.2 (American Nuclear Society, La Grange Park, IL, 1990), p. 1103.Google Scholar
52. Laval, J.Y. and Westmacott, K.H., in Electron Microscopy and Analysis, 1979, edited by Mulvey, T., Conference Series, No. 52 (Institute of Physics, London, 1980), p. 295.Google Scholar
53. Inagaki, Y., Furuya, H., Ono, Y., Idemitsu, K., Banba, T., Matsumoto, S., and Muraoka, S., in Scientific Basis for Nuclear Waste Management XVI, edited by Interrante, C.G. and Pabalan, R.T. (Mater. Res. Soc. Symp. Proc. 294, Pittsburgh, PA, 1993), p. 191.Google Scholar
54. Matzke, Hj.and Toscano, E., Europ. Appl. Res. Rep. 7 (9), 1403 (1990).Google Scholar
55. Matzke, Hj. and Vernaz, E., J. Nucl. Mater. 201, 295 (1993).Google Scholar
56. Matzke, Hj. and van Geel, J., in Disposal of Weapons Plutonium, edited by Merz, E.R. and Walter, C.E. (Kluwer Academic Publishers, The Netherlands, 1996), p. 93.Google Scholar
57. Bonniaud, R.A., Francillon, N.R. Jacquet, Laude, R.L., and Sombret, C.G., in Ceramics in Nuclear Waste Management, edited by Chikalla, T.D. and Mendel, J.E., CONF-790420 (National Technical Information Service, Springfield, VA, 1979), p. 57.Google Scholar
58. Routbort, J. L. and Matzke, Hj., Mater. Sci. and Eng. 58, 229 (1983).Google Scholar
59. Weber, W.J. and Matzke, Hj., Europ. Appl. Res. Rep. 7 (7), 1221 (1987).Google Scholar
60. Yamashita, M. and Matzke, Hj., in Modifications Induced by Irradiation in Glasses, edited by Mazzoldi, P. (Elsevier Science, Amsterdam, 1992), p. 53.Google Scholar
61. Ray, I.L.F. and Matzke, Hj., unpublished results.Google Scholar
62. Turcotte, R.P., Radioactive Waste Management 2, 169 (1981).Google Scholar
63. Dran, J.C., Langevin, Y., Maurette, M., Petit, J.C., and Vassent, B., in Scientific Basis for Nuclear Waste Management, edited by Topp, S.V. (North Holland, New York, 1982), p. 651.Google Scholar
64. Primak, W., Nucl. Sci. and Engr. 80, 689 (1982).Google Scholar
65. Cousens, D.R. and Myhra, S., J. Non-Cryst. Sol. 54, 345 (1983).Google Scholar
66. Grover, J.R. and Chidley, B.E., Reactor Science and Technology 16, 405 (1962).Google Scholar
67. Grover, J.R., in Management of Radioactive Fuel Wastes from Reprocessing (Organisation for Economic Co-Operation and Development, Paris, 1973), p. 593.Google Scholar
68. Westsik, J.H. and Harvey, C.O., High-Temperature Leaching of a Simulated High-Level Waste Glass, PNL-3172 (Pacific Northwest Laboratory, Richland, WA, 1981).Google Scholar
69. Eyal, Y. and Ewing, R.C., in Proc. of the Internat. Conf. on Nuclear Waste Management and Environmental Remediation, Vol. 1, edited by Alexandre, D., Baker, R., Kohout, R. and Marek, J. (ASME Press New York, 1993), p. 191.Google Scholar
70. Doan, N.V., Phil. Mag. A49, 683 (1984).Google Scholar
71. Valle, R.G. Della and Andersen, H.C., J. Chem. Phys. 97, 2682 (1992).Google Scholar
72. Cormier, G., Peres, T., and Capobianco, J.A.. J. Non-Cryst. Sol. 195, 125, (1996).Google Scholar
73. Delaye, J.M. and Ghaleb, D., Mat. Sci. & Eng. B37, 232 (1996).Google Scholar
74. Delay, J.M. and Ghaleb, D., J. Nucl. Mater. (in press).Google Scholar
75. Delaye, J.M. and Ghaleb, D., in Proc. of the 3rd Internat. Conf. on Computer Simulations of Radiation Effects in Solids, University of Surrey Guildford, UK, July 2226, 1996.Google Scholar