Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:39:48.408Z Has data issue: false hasContentIssue false

Quest for Compact Blue Lasers for Optical Memories

Published online by Cambridge University Press:  21 February 2011

R. N. Bhargava*
Affiliation:
Philips Laboratories, North American Philips Corporation, 345 Scarborough Road, Briarcliff Manor, New York 10510
Get access

Abstract

A short wavelength laser offers unique opportunities in high density optical recording as well as in laser printing. To achieve a compact blue laser, the current effort worldwide is primarily concentrated on achieving well-conducting p-type ZnSe and fabricating quantum well heterostructures so as to achieve a low threshold laser at room temperature. The recent milestone ‘an injection blue laser below room temperature’ gives us confidence that indeed we are on the right path. In photopumped lasers in various II-VI heterostructures, thresholds at room temperature comparable to the theoretical limit have been reported. This not only reinforces that indeed a room temperature injection laser is possible but when combined with earlier electron-beam pumped laser results, a scanned compact laser is also feasible.

In recent years several breakthroughs have demonstrated that an infrared emitting GaAs laser can be used to generate blue light through efficient second harmonic generation (SHG) in certain non-linear optical materials. Recent exciting results on SHG of GaAs lasers in KTP grating waveguides resulted in a blue laser with output power in the range of several milliwatts. Alternative schemes such as upconversion lasers and SHG in III-V quantum wells structures are presented.

In summary, various efforts to achieve compact blue lasers and their availability in the near future are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Thomas, G.E., Philips Tech. Rev. 44, 51 (1988).Google Scholar
2. Tomkins, N., Information Display 5, 10 (1990).Google Scholar
3. Seldon, D., Information Display 4, 14 (1988).Google Scholar
4. Bhargava, R.N., Proc. Nato Advanced Research Workshop on Growth and Optical Properties of Wide-Gap JI-VI Low-Dimensional Semiconductors, Regensburg Eds., McGill, T.C., Torres, C.M. Sotomayor and Gebhardt, W. Plenum Press N.Y. (1989) pp. 19.Google Scholar
5. Bhargava, R.N., J. Crystal Growth 59, 15 (1982).CrossRefGoogle Scholar
6. Dean, P.J., Phys. Stat. Sol: (a) 81, 625 (1984).CrossRefGoogle Scholar
7. Gutowski, J., Presser, N. and Kudlek, G., Phys. Stat. Sol. (a) 120, 11 (1990)CrossRefGoogle Scholar
8. Kodoziejski, L.A., Gunshor, R.L., Otsuka, N., Datta, S., Becker, W.M. and Nurmikko, A.V., IEEE J. Quant. Electron. QE–22, 1666 (1986).CrossRefGoogle Scholar
9. Yao, T., The Technology and Physics of Molecular Beam Epitaxy Eds. Dowsett, M.G. and Parker, E.H.C. (Plenum Press N.Y. 1985) pp. 313345.Google Scholar
10. Amano, H., Asahi, T. and Asahi, I., Jap. Jour. Appl. Phys. Lett. 29, L205 (1990).CrossRefGoogle Scholar
11. Yoneda, K., Hishida, Y., Toda, T., Ishii, H. and Niina, T., Appl. Phys. Lett. 45, 1300 (1984).CrossRefGoogle Scholar
12. DePuydt, J.M., Smith, T.L., Potts, J.E., Cheng, H. and Mohapatra, S.K., J. Crystal Growth 86, 318 (1988).CrossRefGoogle Scholar
13. Yao, T., Ogura, M., Matsouka, S. and Morishita, T., Appl. Phys. Lett. 43 499 (1983).CrossRefGoogle Scholar
14. DePuydt, J.M., Cheng, H., Potts, J.E., Smith, T.L. and Mohapatra, S.K., J. Appl. Phys. 62, 456 (1988).Google Scholar
15. Cammack, D.A., Shahzad, K. and Marshall, T., Appl. Phys. Lett. 56, 845 (1990).Google Scholar
16. Stutius, W., J. Crystal Growth 59, 1 (1982).Google Scholar
17. Fujita, S., Isemura, M., Sakamoto, T. and Yoshimura, N., J. Crystal Growth 86, 263 (1988).CrossRefGoogle Scholar
18. Yasuda, T., Mitsuishi, I. and Kukimoto, H., Appl. Phys. Lett. 52, 57 (1988).Google Scholar
19. Giapis, K., Lu, D., Jensen, K., Appl. Phys. Lett. 54, 353 (1989).CrossRefGoogle Scholar
20. Yao, T., Takeda, T. and Watanuki, R., Appl. Phys. Lent. 48 1615 (1986).Google Scholar
21. Houten, H. van, Colak, S., Marshall, T. and Cammack, D.A., J. Appl. Phys. 66, 3047 (1989).Google Scholar
22. Cheng, H., DePuydt, J.M., Potts, J.E. and Smith, T.L., Appl. Phys. Lett. 52, 147 (1988).Google Scholar
23. Neumark, G.F. and Herko, S.P., J. Cryst. Growth 59, 189 (1982); see also G.F. Neumark Phys. Rev. B37, 4778 (1988).Google Scholar
24. Haase, M.A., DePuydt, J.M., Cheng, H. and Potts, J.E., Appl. Phys. Lett. 58, 1173 (1991).CrossRefGoogle Scholar
25. Sasaki, T., Oguchi, T. and Katayama-Yoshida, H., Phys. Rev. B (to be published).Google Scholar
26. Walle, C.G. van de, Laks, D.B., Neumark, G.F., Pantelides, S.T. (to be published).Google Scholar
27. Robbins, D.J., Dean, P.J., Simmonds, P.E. and Tews, H., Deep Centers in Semiconductors, Pantelides, S.T. Ed. Gordon and Breach Science Publishers New York (1986) pp. 717772. Also R.N. Bhargava and S.P. Herko (unpublished results).Google Scholar
28. Dean, P.J., Stutius, W., Neumark, G.F., Fitzpatrick, B.J. and Bhargava, R.N., Phys. Rev. B 27, 2419 (1983).CrossRefGoogle Scholar
29. Ohki, A., Shibata, N. and Zembutsu, S., Japan Jour. Appl. Phys. 27, L909 (1988).CrossRefGoogle Scholar
30. Migita, M., Taike, A., Shiiki, M. and Yamamoto, H., J. Crystal Growth 101, 835 (1990); A. Taike, M. Migita and H. Yamamoto, Appl. Phys. Lett. 56, 1989 (1990).CrossRefGoogle Scholar
31. Park, R.M., Troffer, M.B., Rouleau, C.M., DePuydt, J.M. and Haase, M.A., Appl. Phys. Lett. 57, 2127 (1990).CrossRefGoogle Scholar
32. Ohkawa, K. and Mitsuyu, T., J. Appl. Phys. 70, 439 (1991). K. Ohkawa, T. Karasawa and T. Mitsuyu, J. Crystal Growth (to be published) (1991).Google Scholar
33. Haase, M.A., Qin, J., DePuydt, J.M. and Cheng, H., Appl. Phys. Lett. (to be published).Google Scholar
34. Yao, T. and Okada, Y., Japan Jour. Appl. Phys. 25, 821 (1986).Google Scholar
35. Bhargava, R.N., J. Crystal Growth 86, 873 (1988).Google Scholar
36. Okajima, M., Kawachi, M., Sato, T., Hirahara, K., Kamata, A. and Beppu, T., Extended Abs. 18th Int. Conf. on Solid State Devices and Materials, Tokyo 1986, p. 647.Google Scholar
37. Shibli, S.M., Tamargo, M.C., Skromme, B.J., Schwarz, S.A., Schwartz, C.L., Nahory, R.E. and Martin, R.J., J. Vac. Sci. Technol. B8, 187 (1990).CrossRefGoogle Scholar
38. Akimoto, K., Miyajima, T. and Mori, Y., Phys. Rev. B. 39, 3138 (1989). Ibid Japan Jour. Appl. Phys. 28, L528, L531 (1989).Google Scholar
39. Miyajima, T., Akimoto, K. and Mori, Y., Japan Jour. Appl. Phys. 28, L2330 (1989).CrossRefGoogle Scholar
40. Dean, P.J., Fitzpatrick, B.J. and Bhargava, R.N., Phys. Rev. B 26, 2016 (1982).Google Scholar
41. Haase, M.A., Cheng, H., Depuydt, J.M. and Potts, J.E., J. Appl. Phys. 67, 448 (1990).Google Scholar
42. Migita, M., Taike, A. and Yamamoto, H., Appl. Phys. Lett. 68, 880 (1990).Google Scholar
43. Ren, J., Bowers, K.A., Sneed, B., Dreifus, D.L., Cook, J.W. Jr., Schetzina, J.F. and Kolbas, R.M., Appl. Phys. Lett. 57, 1901 (1990).Google Scholar
44. Ohkawa, K., Karasawa, T. and Mitsuyu, T., Japan Jour. Appl. Phys. 30, L152 (1991).Google Scholar
45. Ohki, A., Kawaguchi, Y., Ando, K. and Katsui, A., Appl. Phys. Lett. 59, 671 (1991).Google Scholar
46. Kosolvskii, V.I., Nasibov, A.S., Pechenov, A.N., Popov, Y.M., Talenskii, O.N. and Shapkin, P.V., Soy. J. Quant. Electron. 7, 194 (1977) and references therein.Google Scholar
47. Colak, S., Fitzpatrick, B.J. and Bhargava, R.N., J. Crystal Growth 72, 504 (1985); R.N. Bhargava, S. Colak, B.J. Fitzpatrick, D. Cammack and J. Khurgin, in: Proc. Intern. Display Research Conf. (IEEE, New York 1985) pp. 200.Google Scholar
48. Colak, S., Khurgin, J., Seemungal, W. and Hebling, A., J. Appl. Phys. 62, 2639 (1987).Google Scholar
49. Potts, J.E., Smith, T.L. and Cheng, H., Appl. Phys. Lett. 50, 7 (1987).CrossRefGoogle Scholar
50. Cammack, D.A., Dalby, R.J., Cornelissen, H.J. and Khurgin, J., J. Appl. Phys. 62, 3071 (1987).CrossRefGoogle Scholar
51. Cornelissen, H.J. (private communication).Google Scholar
52. Zmudzinski, C.A., Guan, Y. and Zory, P.S., IEEE Photonics Technol. Lett. 2, 94 (1990).Google Scholar
53. Jeon, H., Ding, J., Nurmikko, A.V., Luo, H., Sarnarth, N., Furdyna, J.K., Bonner, W.A. and Nahory, R.E., Appl. Phys. Lett. 57, 2413 (1990).CrossRefGoogle Scholar
54. Nakanishi, K., Suemune, I., Fujii, Y., Kuroda, Y. and Yamanishi, M., Japan Jour. Appl. Phys. 30, L1399 (1991).Google Scholar
55. Sun, G., Shahzad, K., Gaines, J.M. and Khurgin, J.B., Appl. Phys. Lett. 59, 310 (1991).Google Scholar
56. Nakanishi, N., Suemune, I., Fujii, Y., Kuroda, K. and Yamanishi, M., Appl. Phys. Lett. 1991 (to be published).Google Scholar
57. Shahzad, K., Olego, D.J. and Walle, C.G. van de, Phys. Rev. B 38, 1417 (1988).Google Scholar
58. Hebert, T., Wannemacher, R., Lenth, W. and MacFarlane, R.M., Appl. Phys. Lett. 51, 1727 (1990).CrossRefGoogle Scholar
59. Armstrong, J.A., Bloembergen, N., Ducuing, J. and Pershan, P.S., Phys. Rev. 127, 1918 (1962).Google Scholar
60. Poel, C. van der, Bierlin, J.D., Brown, J.B. and Colak, S., Appl. Phys. Lett. 57, 1074 (1990).Google Scholar
61. Khurgin, J., Colak, S., Stolzenberger, R. and Bhargava, R.N., Appl. Phys. Lett. 57, 2540 (1990); J. Khurgin, S. Colak and R.N. Bhargava, Conf. on Lasers and Electrooptics 1991 Baltimore Tech. Digest-Series Vol.8 (Optical Soc. of America, Washington D.C.) p. 166.CrossRefGoogle Scholar
62. Yamamoto, K., Mizuuchi, K. and Taniuchi, T., Optics Letters 16, 1156 (1991); K. Mizuuchi, K. Yamamoto and T. Taniuchi, Appl. Phys. Lett. 58, 2732 (1991).Google Scholar
63. Taniuchi, T. and Yamamoto, K., Conf. on Lasers and Electrooptics Annual Meeting Tech. Digest CLEO '87, Baltimore paper WP6 (Optical Soc. of America, Washington D.C.)Google Scholar
64. Shinozaki, K., Miyamoto, Y., Okayama, H., Kamijoh, T. and Nonaka, T., Appl. Phys. Len. 58, 1934 (1991).CrossRefGoogle Scholar
65. Kozlovsky, W.J., Lenth, W., Latta, E.E., Moser, A. and Bona, G.L., Appl. Phys. Lett. 56, 2291 (1990).CrossRefGoogle Scholar