Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T20:16:39.419Z Has data issue: false hasContentIssue false

Quenched-in Free Volume Vf, Deformation-induced Free Volume, the Glass Transition Tg and Thermal Expansion in glassy ZrNbCuNiAl measured by Time-resolved Diffraction in Transmission

Published online by Cambridge University Press:  01 February 2011

A. R. Yavari
Affiliation:
Euronano-LTPCM-CNRS, Institut National Polytechnique de Grenoble, BP 75, 38402 St-Martin-d'Hères Campus, France ([email protected])
M. Tonegaru
Affiliation:
Euronano-LTPCM-CNRS, Institut National Polytechnique de Grenoble, BP 75, 38402 St-Martin-d'Hères Campus, France ([email protected])
N. Lupu
Affiliation:
Institute for Materials Research, Tohoku University, 980–8577 Sendai, Japan
A Inoue
Affiliation:
Institute for Materials Research, Tohoku University, 980–8577 Sendai, Japan
E. Matsubara
Affiliation:
Institute for Materials Research, Tohoku University, 980–8577 Sendai, Japan
G. Vaughan
Affiliation:
European Synchrotron Radiation Facilities (ESRF), 38042 Grenoble, France
Å. Kvick
Affiliation:
European Synchrotron Radiation Facilities (ESRF), 38042 Grenoble, France
W.J. Botta
Affiliation:
Euronano-LTPCM-CNRS, Institut National Polytechnique de Grenoble, BP 75, 38402 St-Martin-d'Hères Campus, France ([email protected])
Get access

Abstract

Using high-precision X-ray dilatometry, we have succeeded in directly measuring excess quenched-in free-volume Vf in metallic glasses. The method was applied to the very easy glass forming Zr57Nb5Cu15.4Ni12.6Al10 (Vit 106). The annealing out of the order of 0.5% free volume was observed during heat treatment of rapidly solidified glassy ribbons. Excess free volume was also generated by heavy deformation and observed to anneal out during heat treatment. Once the excess free volume anneals out, the glass transition Tg appears clearly as a break in the x-ray dilatation curves as the glass goes over to the supercooled liquid region prior to crystallization at Tx.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFGERENCES

[1] Turnbull, D., Liquids: Structure, Properties, Solid Interactions, pp. 624, Ed: Hughel, T.J., Elsevier, Amsterdam 1965 Google Scholar
[2] Eyring, H., Ree, T. and Hirai, N., Proc. Nat. Acad. Sci., 44, 683 (1958)Google Scholar
[3] Spaepen, F., Acta Metall. 25, 407 (1977).Google Scholar
[4] Steif, P.S., Spaepen, F. and Hutchinson, J.W., Acta Metall 30, 447 (1982).Google Scholar
[5] Argon, A., Acta Metall. 27, 47 (1979).Google Scholar
[6] Klement, W., Willens, R. H. and Duwez, P., Nature 187, 869 (1960)Google Scholar
[7] Busch, R. et al, Mater Sci Eng A304–306, 97 (2001).Google Scholar
[8] Chen, H.S., Krause, J.T. and Sigety, E.A., J. Non-Cryst. Solids 13, 321 (1973/1974).Google Scholar
[9] Kui, H.W., Greer, A.L. and Turnbull, D., Appl. Phys. Lett. 45, 615 (1984)Google Scholar
[10] Inoue, A., Acta Mater. 48, 279 (2000).Google Scholar
[11] Johnson, W.L., MRS Bulletin, Oct. 1999, pp. 4256 Google Scholar
[12] Yavari, A.R., Le Moulec, A., Inoue, A., Vaughan, G. and Kvick, Å., Annales de la Chimie Sciences des Matériaux, 27, 107 (2002).Google Scholar
[13] Yavari, A.R., Inoue, A., Zhang, T., Botta, W.J., Kvick, A., Scripta Mater. 44, 1239 (2001)Google Scholar
[14] Yavari, A.R., LeMoulec, A., Inoue, A., Botta, W.J., Vaughan, G., Kvick, A., Materials Sci.e Eng. A 304–306, 34 (2001).Google Scholar
[15] Uriarte, J.L., Yavari, A.R., Nishiyama, N., Heunen, G., Vaughan, G., Kvick, Å. and Inoue, A., Scripta Mater. 48, 809 (2003)Google Scholar
[16] Yavari, A.R., Uriarte, J.L., Nikolov, N., Nishiyama, N., Zhang, T., Inoue, A., Heunen, G., Mater. Sci. Eng. A in pressGoogle Scholar
[17] Yavari, A.R., Pang, S., Louzguine, D., Inoue, A., Lupu, N., Nikolov, N. and Heunen, G., J. Metastable & Nanocryst. Mater. 15, 105 (2003).Google Scholar
[18] Yavari, A.R., International Symposium on Metastable and Nanocrystalline Materials (ISMANAM), Foz do Iguacu, August 2003, to appear in J. Metastable & Nanocryst. Mater. Google Scholar
[20] Guinier, A., “Théories et Techniques de la Radio-christalographie”, Dunod (1964)Google Scholar
[21] Waseda, Y. and Egami, T., J. Mater. Sci. 14, 1249 (1979).Google Scholar
[23] Bennett, C.H., Chaudari, P., Moruzzi, V. and Steinhart, P., Philo. Mag. A 40, 485 (1979).Google Scholar
[24] Schermeyer, D., Neuhäuser, H., Mater. Sci. Eng. A226–228, 846 (1997).Google Scholar
[25] Lu, I.R., Görler, G.P., Fecht, H.J., Willnecker, R., J. Non-Cryst. Solids 312–314, 547 (2002)Google Scholar
[26] Spaepen, F., MRS Proc. Symp MM, Fall 2003.Google Scholar