Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-20T11:30:47.487Z Has data issue: false hasContentIssue false

Quenched-in Defects in CW Laser Irradiated Virgin Silicon.

Published online by Cambridge University Press:  15 February 2011

A. Chantre
Affiliation:
Cnet/Cns - BP, 42 – 38240 Meylan - France
M. Kechouane
Affiliation:
Cnet/Cns - BP, 42 – 38240 Meylan - France
D. Bois
Affiliation:
Cnet/Cns - BP, 42 – 38240 Meylan - France
Get access

Abstract

Quenched-in defects in cw laser irradiated silicon have been identified using deep level transient spectroscopy. Four among the five dominant defect states arise from transition metal impurities (iron, chromium) present in precipitates in the as-grown material and dispersed into the crystal upon heat treatment. Native defects are involved in the form of phosphorous-vacancy complexes, which account for the remaining level.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chen, J. W. and Milnes, A. G., Ann. Rev. Mater. Sci., 10 (1980) 157, and references herein.CrossRefGoogle Scholar
2. Van Vechten, J. A. and Thurmond, C. D., Phu. Rev. B, 14 (1976) 3551.CrossRefGoogle Scholar
3. Chantre, A., Kechouane, M. and Bois, D., 12th Int. Conf. Defects in Semiconductors, Amsterdam (Sept. 1982), to be published in the Proceedings of the Conference.Google Scholar
4. Auvert, G., Bensahel, D., Georges, A., N'Guyen, V. T., Henoc, P., Morin, F. and Coissard, P., Appl. Phys. Lett., 38 (1981) 613.CrossRefGoogle Scholar
5. Chantre, A., Kechouane, M. and Bois, D., Laser and Electron Beam Interactions with Solids 1981, edited by Appleton, B. R. and Celler, G. K. (North Holland, 1982) 325.Google Scholar
6. Frenkel, J., Phys. Rev., 54 (1938) 647.CrossRefGoogle Scholar
7. Kimerling, L. C., Radiation Effects in Semiconductors, 1976;Google Scholar
7a Inst. Phys. Conf. Ser. n° 31 (1977) 221.Google Scholar
8. Kimerling, L. C., De Angelis, H. M. and Diebold, J. W., Solid State Commun., 16 (1975) 171.CrossRefGoogle Scholar
9. Graff, K. and Pieper, H., J. Electrochem. Soc., 128 (1981) 669, and references herein.CrossRefGoogle Scholar
10. Kimerling, L. C. and Benton, J. L., in Ref. 3.Google Scholar
11. Johnson, N. M., Regolini, J. L., Bartelink, D. J., Gibbons, J. F. and Ratnakumar, K. N., Appl. Phys. Lett., 36 (1980) 425.CrossRefGoogle Scholar
12. Lee, Y. H., Kleinhenz, R. L. and Corbett, J. W., Defects and Radiation Effects in Semiconductors, 1978;Google Scholar
12a Inst. Phys. Conf. Ser. n° 46 (1979) 521.Google Scholar
13. Feichtinger, H. and Czaputa, R., Appl. Phys. Lett. 39 (1981) 706.CrossRefGoogle Scholar
14. Graff, K. and Pieper, H., Semiconductor Silicon 1981, edited by Huff, H. R. and Kriegler, R. J. (The Electrochemical Society, N. J., 1981) 331.Google Scholar
15. Sheng, N. H. and Merz, J. L., in Ref. 5, 313.Google Scholar
16. Mooney, P. M., Cheng, L. J., Süli, M., Gerson, J. D. and Corbett, J. W., Phys. Rev. B, 15 (1977) 3836.CrossRefGoogle Scholar
17. Chantre, A., Kechouane, M., Auvert, G. and Bois, D., to be published.Google Scholar
18. Weber, E. and Riotte, H. G., J. Appl. Phys., 51 (1980) 1484.CrossRefGoogle Scholar