Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T21:22:45.019Z Has data issue: false hasContentIssue false

Quartz Crystal Microbalance Determination of Laser Photochemical Deposition Rates: Mechanism of Laser Photochemical Deposition From the Group 6 Hexacarbonyls

Published online by Cambridge University Press:  26 February 2011

Robert L. Jackson
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120
George W. Tyndall
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120
Get access

Abstract

A quartz crystal microbalance has been used to measure the rates of focused uv laser-induced deposition from the Group 6 hexacarbonyls in real time. The experimental configuration employs acwuv laser beam focused onto the microbalance crystal surface at normal incidence to deposit material by decomposition of a metal complex vapor. Simple equations are given for determining absolute deposition rates in terms of the total mass deposited per unit time. Kinetic data obtained with this system have been used to study the mechanism of laser photodeposition from Cr(CO)e, Mo(CO)6, and W(CO)é induced by a frequency-doubled argon ion laser. The rate-determining deposition step involves condensation of products formed upon single-photon dissociation of the metal carbonyls in the gas phase. Additional observations indicate that the adsorbed photoproducts undergo further photo-initiated dissociation on the substrate surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Ehrlich, D. J., Osgood, R. M. Jr., Silversmith, D. J., and Deutsch, T. F., IEEE Electr. Dev. Lett., EDL-3, 101 (1980).Google Scholar
2 Randall, J. N, Ehrlich, D. J., and Tsao, J. Y., J. Vac. Sci. Technol. B, 3, 262 (1985).Google Scholar
3 Oprysko, M. M., Beranek, M. W., and Young, P. L., IEEE Electr. Dev. Lett., EDL-6, 344 (1985).Google Scholar
4 Quantronix Corp., Smithtown, New York, 1986.Google Scholar
5 Herman, I. P., in Laser Processing and Diagnostics, edited by Bauerle, D. (Springer-Verlag, Berlin), Springer Ser. Chem. Phys., 39, 396 (1984).Google Scholar
6 Ehrlich, D. J., Osgood, R. M. Jr., and Deutsch, T. F., IEEE J. Quant. Electr., 1, 969 (1983).Google Scholar
7 Krchnavek, R. R., Gilgen, H. H., Chen, J. C., Shaw, P. S., Licata, T. J., and Osgood, R. M. Jr., J. Vac. Sci. Technol. B, 5, 20 (1987).Google Scholar
8 Tsao, J. Y., Zeiger, H. J., and Ehrlich, D. J., Surf. Sci., 160, 419 (1985).Google Scholar
9 Jackson, R. L. and Tyndall, G. W., J. Appl. Phys., 62, 315 (1987).Google Scholar
10 Jones, C. R., Houle, F. A., Kovac, C. A., and Baum, T. H., Appl. Phys. Lett., 46, 97 (1985).Google Scholar
11 Tsao, J. Y., Becker, R. A., Ehrlich, D. J., and Leonberger, F. J., Appl. Phys. Lett., 42, 559 (1983).Google Scholar
12 Rigby, L. J., Trans. Faraday Soc., 65, 2421 (1969).Google Scholar
13 Mayer, T. M., Fisanick, G. J., and Eichelberger, T. S., J. Appl. Phys., 53, 8462 (1982).Google Scholar
14 Sauerbrey, G., Z. Physik, 155, 206 (1959).Google Scholar
15 Lu, C.-S. and Lewis, O., J. Appl. Phys., 43, 4385 (1972).Google Scholar
16 Pulker, H. K., Benes, E., Hammer, D., and Sollner, E., Thin Solid Films, 32, 27 (1976).Google Scholar
17 Tsao, J. Y. and Ehrlich, D. J., Proc. Soc. Photo-Opt. Instr. Eng., 459, 2 (1984).Google Scholar
18 Jackson, R. L., Baum, T. H., Kodas, T. T., Ehrlich, D. J., and Comita, P. B., in Laser Microfabrication: Thin Film Processes and Lithography, edited by D. J. Ehrlich and J. Y. Tsao (Academic Press, Orlando, to be published).Google Scholar
19 Tyndall, G. W. and Jackson, R. L., J. Am. Chem. Soc., 109, 582 (1987).Google Scholar
20 Tyndall, G. W. and Jackson, R. L., unpublished results.Google Scholar
21 Jackson, R. L. and Tyndall, G. W., J. Appl. Phys., to be published.Google Scholar
22 Osgood, R. M. Jr. and Ehrlich, D. J., Opt. Lett., 7, 385 (1982).Google Scholar
23 Wilson, R. J. and Houle, F. A., Phys. Rev. Lett., 55, 2184 (1985).Google Scholar
24 Brueck, S. R. J. and Ehrlich, D. J., Phys. Rev. Lett., 48, 1678 (1982).Google Scholar
25 Tumas, W., Gitlin, B., Rosan, A. M., and Yardley, J. T., J. Am. Chem. Soc., 104, 55 (1982).Google Scholar
26 Fletcher, T. R. and Rosenfeld, R. N., J. Am. Chem. Soc., 107, 2203 (1985).Google Scholar
27 Seder, T. A., Church, S. P., and Weitz, E., J. Am. Chem. Soc., 108, 4721 (1986).Google Scholar
28 Pilcher, G., Ware, M. J., and Pittam, D. A., J. Less-Comm. Met., 42, 223 (1975).Google Scholar
29 Gluck, N. S., Ying, Z., Bartosch, C. E., and Ho, W., J. Chem. Phys., 86, 4957 (1987).Google Scholar