Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T03:46:29.375Z Has data issue: false hasContentIssue false

Quantum-well Intermixing using Ge-doped Sol-gel Derived Silica Encapsulant Layer

Published online by Cambridge University Press:  01 February 2011

Hery Susanto Djie
Affiliation:
[email protected], Lehigh University, Electrical and Computer Engineering, Sinclair Lab.,, 7 Asa Dr., Bethlehem, PA, 18015, United States, 610-7583793, 610-7582605
Boon-Siew Ooi
Affiliation:
[email protected], Lehigh University, Electrical and Computer Engineering, United States
Charles Kin-Fai Ho
Affiliation:
[email protected], Nanyang Technological University, School of Electrical and Electronic Engineering, Singapore
Ting Mei
Affiliation:
[email protected], Nanyang Technological University, School of Electrical and Electronic Engineering, Singapore
Kantisara Pita
Affiliation:
[email protected], Nanyang Technological University, School of Electrical and Electronic Engineering, Singapore
Quoc-Nam Ngo
Affiliation:
[email protected], Nanyang Technological University, School of Electrical and Electronic Engineering, Singapore
Get access

Abstract

We report the intermixing enhancement using the Ge-doped sol-gel derived silica encapsulant layer in InGaAs/InGaAsP quantum-well laser structure. A bandgap shift of ∼64 nm has been observed from 16% Ge-doped silica capped sample at an annealing temperature of 630°C while the intermixing at the similar temperature can be effectively suppressed with the e-beam evaporated SiO2 encapsulant layer. Using our theoretical model, nearly identical activation energy of 1.7±0.5 eV was obtained from the intermixed sample with Ge-doped silica. Similar intermixing enhancement holds for high Ge-content cap in the intermixed GaAs/AlGaAs quantum-wells related to Ga vacancy injection. We postulate that the dissimilarity in interdiffusion behavior between 0% and 16% Ge-doped silica capped sample is only attributed to the difference in the number of beneficial vacancies that involve in the intermixing process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ooi, B. S., et al. , IEEE J. Quantum Electron. 33, 1784 (1997).Google Scholar
2. Deenapanray, P. N. K. et al. , Appl. Phys. Lett. 80, 4351 (2002).Google Scholar
3. Cusumano, P. et al. , J. Appl. Phys. 81, 2445 (1997).Google Scholar
4. Djie, H. S., Mei, T., Arokiaraj, J., and Thilakan, P., Jpn. J. Appl. Phys. 41, L867 (2002).Google Scholar
5. Ho, C. K. F. et al. , Electrochem. Solid-State Lett. 7, F96 (2004).Google Scholar
6. Rao, E. V. K. et al. , Appl. Phys. Lett. 66, 472 (1995).Google Scholar
7. Cao, N. et al. , Appl. Phys. Lett. 70, 3419 (1997).Google Scholar
8. Si, S. K. et al. , IEEE J. Select. Top. Quantum. Electron. 4, 619 (1998).Google Scholar
9. Yeo, D. H., Yoon, K. H., and Kim, S. J., Jpn. J. Appl. Phys. 39, 1032 (2000).Google Scholar
10. Yu, J. S., Lee, Y. T., and Lim, H., J. Appl. Phys. 88, 5720 (2000).Google Scholar
11. Wojcik, J., et al. , J. Vac. Sci. Technol. A 20, 1076 (2002).Google Scholar
12. Brunnet-Brunneau, A. et al. , J. Appl. Phys. 82, 1330 (1997).Google Scholar
13. Djie, H. S. et al. , IEE Proc. Optoelectron. 149, 138 (2002).Google Scholar
14. Djie, H. S. et al. , IEEE J. Quantum Electron. 40, 166 (2004).Google Scholar
15. Rao, S. S., Gillin, W. P., and Homewood, K. P., Phys. Rev. B. 50, 8071 (1994).Google Scholar
16. Khreis, O. M., Gillin, W. P., and Homewood, K. P., Phys. Rev. B. 55, 15813 (1997).Google Scholar
17. Doshi, S. et al. , J. Vac. Sci. Technol. B. 21, 198 (2003).Google Scholar
18. Huang, Y. Y., Sarkar, A., and Schultz, P. C., J. Non-cryst. Solids 27, 29 (1978).Google Scholar
19. Djie, H. S., Mei, T., and Arokiaraj, J., Semicond. Sci. Technol. 20, 244 (2005).Google Scholar
20. Deppe, D. G., and Holonyak, N. Jr, J. Appl. Phys. 64, R93 (1988).Google Scholar