Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T01:42:31.917Z Has data issue: false hasContentIssue false

Quantum-Size Variation in Optical Transition Energies of CdTe Crystals in Glass

Published online by Cambridge University Press:  28 February 2011

B. G. Potter Jr.
Affiliation:
University of Florida, Dept. of Materials Science and Engineering, Gainesville, FL 32611
JH Simmons
Affiliation:
University of Florida, Dept. of Materials Science and Engineering, Gainesville, FL 32611
Get access

Abstract

We examine the effects of finite crystallite size on the energies of optical transitions originating from states located at two different critical points of the semiconductor Brillouin zone. Using a versatile, dual source, R.F. sputtering technique, CdTe-glass composite thin films have been produced possessing average crystal sizes ranging from 24 to 125 Å in films containing up to 30 vol% semiconductor. Analysis of quantum-size induced transition energy shifts, monitored by optical absorption, indicates the persistence of significant Coulomb interactions between carriers at the gamma point of CdTe in crystallite sizes 0.3 times the size of the bulk exciton. L-point transition energy shifts support the existence of 2-D bound electron-hole pair states whose center-of-mass motion is confined in the semiconductor crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brus, L.E., J. Chem. Phys. 79, 5566 (1983);Google Scholar
J. Lumin. 31 &32. 381 (1984).Google Scholar
2. Wang, Y. and Mahler, W., Opt. Commun. 61, 233 (1987).Google Scholar
3. Kuczynski, J. and Thomas, J.K., J. Phys. Chem. 89, 2720 (1985).Google Scholar
4. Wang, Y. and Herron, N., J. Phys. Chem. 91, 257 (1987).Google Scholar
5. Nogami, M., Nagasaka, K., and Takata, M., J. Non-Cryst. Sol., 122, 101 (1990).Google Scholar
6. Borrelli, N.F., Hall, D.W., Holland, H.J., and Smith, D.W., J. Appl. Phys. 61, 5399 (1987).Google Scholar
7. Ekimov, A.I. and Onushchenko, A.A., Sov. Phys. Semicond. 16, 775 (1982).Google Scholar
8. Fuyu, Y. and Parker, J.M., Mat. Lett. 6, 233 (1988).Google Scholar
9. Potter, B.G. Jr. and Simmons, J.H., Phys. Rev. B 37, 10838 (1988).Google Scholar
10. Clausen, E.M., Ph.D. Dissertation, University of Florida, Gainesville, FL (1987).Google Scholar
11. Jerominek, H., Patela, S., Pigeon, M., Jakubczyk, Z., Delisle, C., and Tremblay, R., J. Opt. Soc. Am. B 5, 496 (1988).Google Scholar
12. Tsunetomo, K., Nasu, H., Kitayama, H., Kawabuchi, A., Osaka, Y., and Takiyama, K., Jpn. J. Appl. Phys. 23, 1928 (1989).CrossRefGoogle Scholar
13. Potter, B.G. Jr. and Simmons, J.H., J. Appl. Phys. 68, 1218 (1990).Google Scholar
14. Efros, AI.L and Efros, A.L, Sov. Phys. Semicond. 16, 772 (1982).Google Scholar
15. Kayanuma, Y., Solid State Commun. 59, 405 (1986).Google Scholar
16. Kayanuma, Y., Phys. Rev. B 38, 9797 (1988).Google Scholar
17. Cardona, M. and Greenaway, D.L., Phys. Rev. 125, 1291 (1962).Google Scholar
18. Ehrenreich, H., J. Appl. Phys. 32, 2155 (1961).Google Scholar
19. Potter, B.G. Jr. and Simmons, J.H., Phys. Rev. B, in press.Google Scholar
20. Kane, E.O., Phys. Rev. 180, 852 (1962).Google Scholar