Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:32:39.653Z Has data issue: false hasContentIssue false

Quantum-Mechanical Origins Of complex Structures in Al-Transition Metal Compounds

Published online by Cambridge University Press:  28 February 2011

A. E. Carlsson*
Affiliation:
Department of Physics, Washington University St. Louis, Missouri 63130
Get access

Abstract

The energetic factors leading to the stability of complex structures in Al-rich transition-metal compounds are analyzed via ab-initio band-theoretic total-energy calculations comparing the Al12W and Cu3Au structures. For nearly half-filled d-bands, the Al12W structure is preferred by 1 eV per transition-metal atom or more. The preference for complex structures results from effects related to the shape of the d-projected electronic density of states, which are found to be more important than atomic-size effects, and are directly related to the complexity of the structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See Villars, P. and Calvert, L. D., Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM, Metals Park, Ohio, 1986).Google Scholar
2. Elser, V. and Henley, C. L., Phys. Rev. Lett. 55, 2883, (1985).Google Scholar
3. See Yeomans, J., in Solid State Physics: Advances in Research and Applications, Vol. 42, edited by Ehrenreich, H. and Turnbull, D. (Academic Press, New York, 1989), p. 1.Google Scholar
4. Schaefer, R. J., Biancaniello, F. S., and Cahn, J. W., Scripta Metall. 20, 1439, (1986).Google Scholar
5. Williams, A. R., Kiibler, J. R., and Gelatt, C. D., Phys. Rev. B 19, 6094, (1979).Google Scholar
6. Carlsson, A. E. and Meschter, P. J., J. Mat. Res. 4, 1060, (1989).Google Scholar
7. Methfessel, M. and Kiibler, J. R., J. Phys. F12, 141, (1982).Google Scholar
8. Xu, J.-h. and Freeman, A. J., Phys. Rev. B 40, 11927, (1989).Google Scholar
9. Shoemaker, D. P. and Shoemaker, C. B., in Introduction to Quasicrystals, Vol. 1, edited by Jaric, M. V. (Academic Press, New York, 1988), p. 1.Google Scholar
10. Redfield, A. C. and Zangwill, A., Phys. Rev. Lett. 58, 2322 (1987); A. Zangwill and A. C. Redfield, J. Phys. F18, 1, (1988).Google Scholar
11. Fujiwara, T., Phys. Rev. B 40, 942, (1989).Google Scholar
12. Voisin, E. and Pasturel, A., Phil. Mag. Lett. 55, 123, (1987).Google Scholar
13. McHenry, M. E., Eberhart, M. E., O'Handley, R. C., and Johnson, K. H., Phys. Rev. Lett. 56, 81, (1986).Google Scholar
14. Carlsson, A. E. in Solid State Physics: Advances in Research and Applications, Vol. 43 (Academic Press, New York, 1990), p. 1; Phys. Rev. B 32, 4866, (1985).Google Scholar
15. Warren, W. W. Jr., Chen, H. S., and Espinosa, G. P., Phys. Rev. B 34, 4902, (1986).Google Scholar
16. Kelton, K. F. and Holzer, J. C., Phys. Rev. B 37, 3940, (1988).Google Scholar
17. Bancel, P. A. and Heiney, P. A., Phys. Rev. B 33, 7917, (1986).Google Scholar
18. Wagner, J. L., Wong, J. M., and Poon, S. J., Phys. Rev. B 39, 8091, (1989).Google Scholar