Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T01:42:13.724Z Has data issue: false hasContentIssue false

Quantum-Confined Optical Interband Transitions in 5-Doped Doping Superlattices

Published online by Cambridge University Press:  28 February 2011

E. F. Schubert
Affiliation:
AT&T Bell Laboratories 600 Mountain Avenue Murray Hill, New Jersey 07974
T. D. Harris
Affiliation:
AT&T Bell Laboratories 600 Mountain Avenue Murray Hill, New Jersey 07974
J. E. Cunningham
Affiliation:
AT&T Bell Laboratories Crawfords Comer Road Holmdel, New Jersey, 07733
Get access

Abstract

Optical absorption and photoluminescence experiments are performed on GaAs doping superlattices, which have a δ-function-like doping profile of alternating n-type and p-type dopant sheets. Absorption and emission spectra reveal for the first time the clear signature of quantum-confined interband transitions. The peaks of the experimental absorption and luminescence spectra are assigned to calculated energies of quantum-confined transitions with very good agreement. It is shown that the employment of the δ-doping technique results in improved optical properties of doping superlattices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Esaki, L. and Tsu, R., IBM J. Res. Develop. 14, 61 (1970).CrossRefGoogle Scholar
[2] Esaki, L., IEEE J. Quant. Electron. QE–22, 1611 (1986).Google Scholar
[3] Döhler, G. H., IEEE J. Quant. Electron. QE–22, 1682 (1986).Google Scholar
[4] Ploog, K. and Döhler, G. H., Adv. Phys. 32, 285 (1983).CrossRefGoogle Scholar
[5] Diffusion and segregation of Si-dopants in 8-doped GaAs was shown to be insignificant at low growth temperatures, see Schubert, E. F. et al. , Appl. Phys. Lett. 52, 1508 (1988) and also Appl. Phys. Lett. 53, 293 (1988).Google Scholar
[6] Schubert, E. F., Ullrich, B., Harris, T. D., Cunningham, J. E., Phys. Rev. B38, 8305 (1988).CrossRefGoogle Scholar
[7] Schubert, E. F., Harris, T. D., Cunningham, J. E., and Jan, W., Phys. Rev. B39 May 15 (1989).Google Scholar
[8] Schubert, E. F., Cunningham, J. E., and Tsang, W. T., Solid State Commun., 63, 591 (1987).Google Scholar
[9] Gillman, G., Vinter, B., Barbier, E., and Tardella, A., Appl. Phys. Lett. 52, 972 (1988).CrossRefGoogle Scholar
[10] Schubert, E. F., Harris, T. D., and Cunningham, J. E., Appl. Phys. Lett. 53, 2208 (1988).Google Scholar