Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T01:37:57.338Z Has data issue: false hasContentIssue false

Quantum Well and Quantum Dot Based Detector Arrays for Infrared Imaging

Published online by Cambridge University Press:  01 February 2011

Sarath Gunapala
Affiliation:
[email protected], California Institute of Technology, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA, 91109, United States, 818 354 1880, 818 393 4540
Sumith Bandara
Affiliation:
[email protected], California Institute of Technology, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA, 91109, United States
Cory Hill
Affiliation:
[email protected], California Institute of Technology, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA, 91109, United States
David Ting
Affiliation:
[email protected], California Institute of Technology, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA, 91109, United States
John Liu
Affiliation:
[email protected], California Institute of Technology, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA, 91109, United States
Jason Mumolo
Affiliation:
[email protected], California Institute of Technology, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA, 91109, United States
Sam Keo
Affiliation:
[email protected], California Institute of Technology, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA, 91109, United States
Edward Blazejewski
Affiliation:
[email protected], California Institute of Technology, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA, 91109, United States
Get access

Abstract

A mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 320x256 pixel quantum well infrared photodetector (QWIP) dualband focal plane arrays (FPAs) have been demonstrated with excellent imagery. Currently, we are developing a 1024x1024 pixel simultaneous pixel co-registered dualband QWIP FPA. In addition, epitaxially grown self-assembled InAs/InGaAs/GaAs quantum dots (QDs) are exploited for the development of large-format FPAs. The Dot-in-a-Well (DWELL) structures were experimentally shown to absorb both 45° and normal incident light, therefore a reflection grating structure was used to enhance the quantum efficiency. The devices exhibit peak responsivity out to 8.1 microns, with peak detectivity reaching ∼ 1 × 1010 Jones at 77 K. The devices were fabricated into the first LWIR 640x512 pixel QDIP FPA, which has produced excellent infrared imagery with NETD of 40 mK at 60K operating temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Liu, H. C. Capasso, F. (Eds.), Intersubband Transitions in Quantum Wells: Physics and Device Applications I and II, Academic Press, San Diego, 2000.Google Scholar
2. Gunapala, Sarath D. Liu, John K. Park, Jin S., Sundaram, Mani, Shott, Craig A. Hoelter, Ted, Lin, True-Lon, Massie, S. T. Maker, Paul D., Muller, Richard E., and Sarusi, Gabby9 μm Cutoff 256x256 AlxGa1-xAs/AlxGa1–xAs Quantum Well Infrared Photodetector Hand-Held Camera”, IEEE Trans. Electron Devices, 44, pp. 5157, 1997.Google Scholar
3. Gunapala, Sarath D., Bandara, Sumith V., Liu, John K., Hong, Winn, Sundaram, Mani, Maker, Paul D., Muller, Richard E., Shott, Craig A., and Carralejo, Ronald, “Long-Wavelength 640x486 GaAs/AlxGa1–xAs Quantum Well Infrared Photodetector Snap-shot Camera”, IEEE Trans. Electron Devices, 45, 1890 (1998).Google Scholar
4. Cabanski, W. Breiter, R. Koch, R. Mauk, K. H. Rode, W. Ziegler, J. Schneider, H. Walther, M., and Oelmaier, R.3rd gen Focal Plane Array IR Detection Modules at AIM”, SPIE Vol. 4369, pp. 547558 (2001).Google Scholar
5. Gunapala, S. D. and Bandara, S. V. “Quantum Well Infrared Photodetector (QWIP) Focal Plane Arrays,” Semiconductors and Semimetals, Vol. 62, 197282, Academic Press, 1999.Google Scholar
6. Gunapala, S. D. Bandara, S. V. Singh, A. Liu, J. K. Rafol, S. B. Luong, E. M. Mumolo, J. M. Tran, N. Q. Vincent, J. D. Shott, C. A. Long, J. and LeVan, P. D.640x486 Longwavelength Two-color GaAs/AlGaAs Quantum Well Infrared Photodetector (QWIP) Focal Plane Array CameraIEEE Trans. Electron Devices, Vol. 47, pp. 963971, 2000.Google Scholar
7. Ryzhii, V.The theory of quantum-dot infrared photodetector”, Semicond. Sci. Technol., Vol. 11, pp. 759765 (1996).Google Scholar
8. Phillips, J. Kamath, K. and Bhattacharya, P.Far-infrared photoconductivity in delforganized InAs quantum dots”, Appl. Phys. Lett., Vol. 72, pp. 20202022 (1998).Google Scholar
9. Gunapala, S. D. Bandara, S. V. Hill, C. J. Ting, D. Z. Liu, J. K. Rafol, S. B. Blazejewski, E. R., Mumolo, J. M. Keo, S. A. Krishna, S. Chang, Y.-C., and Shott, C. A.640x512 pixels long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) imaging focal plane array”, IEEE Journal of Quantum Electronics, Vol. 43, pp. 230237 (2007).Google Scholar
10. Krishna, S. Gunapala, S. D. Bandara, S. V. Hill, C. and Ting, D. Z.Quantum Dot Based Infrared Focal Plane Arrays”, IEEE Special Issue on Optoelectronic Devices Based on Quantum Dots, 95, pp. 18381852 (2007).Google Scholar