Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T11:00:44.916Z Has data issue: false hasContentIssue false

Quantum Ring Infrared Photodetector Based On Droplet Epitaxy Technique

Published online by Cambridge University Press:  31 January 2011

Dali Shao
Affiliation:
[email protected], University of Arkansas, Electrical Engineering, Fayetteville, Arkansas, United States
Jiang Wu
Affiliation:
[email protected], University of Arkansas, Electrical Engineering, Fayetteville, Arkansas, United States
Zhenghua Li
Affiliation:
[email protected], University of Arkansas, Institue of Nanoscale Science and Engineering, Fayetteville, Arkansas, United States
Omar Manasreh
Affiliation:
[email protected], United States
Vasyl P Kunets
Affiliation:
[email protected], University of Arkansas, Institue of Nanoscale Science and Engineering, Fayetteville, Arkansas, United States
Zhiming M Wang
Affiliation:
[email protected], University of Arkansas, Institute of Nanoscale Science and Engineering, Fayetteville, Arkansas, United States
Gregory J. Salamo
Affiliation:
[email protected], United States
Get access

Abstract

In this work, we design and fabricate a GaAs quantum ring infrared photodetector. The lattice matched GaAs/Al0.3Ga0.7As quantum rings are grown by using molecular beam epitaxy technique. The morphology of the quantum rings are characterized by an atomic force microscopy. Normal incident configured photodetectors are fabricated by standard photolithography. The photoresponse spectra are measured by a Fourier transform infrared spectrometer and exhibit two broad bands in visible-near-infrared and mid-infrared spectral range. Using quantum rings as absorption medium, we observed visible-near-infrared response at a temperature as high as 300 K while mid-infrared response up to 140 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rogalski, A., Prog. Quantum Electron. 27, 59 (2003).Google Scholar
2 Tidrow, M. Z., Mater. Sci. Eng., B 74, 45 (2000).Google Scholar
3 Rogalski, A., J. Appl. Phys. 93, 4355 (2003).Google Scholar
4 Mittleman, D. M., Jacobsen, R. H., and Nuss, M. C.: IEEE J. Sel. Top. Quantum Electron. 2 679 (1996).Google Scholar
5 Ye, Zhengmao, Campbell, Joe C., Chen, Zhonghui, Kim, Eui-Tae, and Madhukar, Anupam, J. Appl. Phys. 92, 12 (2002).Google Scholar
6 Passmore, B. S., Wu, J., Manasreh, M. O., and Salamo, G. J., Appl. Phys. Lett. 91, 233508 (2007).Google Scholar
7 Passmore, B. S., Wu, J., Manasreh, M. O., Kunets, V. P., Lytvyn, P. M., and Salamo, G. J., IEEE Electron Device Lett. 29, 224 (2008).Google Scholar
8 Chua, Y. C., Decuir, E. A. Jr , Passmore, B. S., Sharif, K. H., Manasreh, M. O., Wang, Z. M., and Salamo, G. J., Appl. Phys. Lett. 85, 1003 (2004).Google Scholar
9 Campbell, Joe C. and Madhukar, Anupm, Proceedings of the IEEE, vol. 95, No. 9, (2007).Google Scholar
10 Tang, S. F., Lin, S. Y., and Lee, S. C., Appl. Phys. Lett. 78, 2428 (2001).Google Scholar
11 Chakrabarti, S., Stiff-Roberts, A. D., Bhattacharya, P., Gunapala, S. D., Bandara, S., Rafol, S. B., and Kennerly, S. W., IEEE Photonics Technol. Lett. 16, 1361 (2004).Google Scholar
12 Mano, T., Kuroda, T., Yamagiwa, M., Kido, G., Sakoda, K. and Koguchi, N., Appl. Phys. Lett. 89, 183102 (2006).Google Scholar
13 Wang, Z. M., Holmes, K., Shults, H. L., and Salamo, G. J., Phys. Status Solidi A 202, R85 (2005).Google Scholar
14 Wu, J., Li, Z., Shao, D., Manasreh, M. O., Kunets, V. P., Wang, Z. M., and Salamo, G. J., Appl. Phys. Lett. 94, 171102 (2009).Google Scholar