Published online by Cambridge University Press: 01 February 2011
A tight-binding hamiltonian is used to study the electronic properties of covalently-bonded, crossed (5,5) metallic nanotubes with increasing degree of disorder in the junction region. At one extreme, ideal junctions between coplanar nanotubes with a minimal number of topological defects show a good ohmic behavior. Upon increasing disorder, ohmic conduction is suppressed in favor of hopping conductivity. At the opposite extreme, strongly disordered junctions as could be obtained after electron-beam irradiation of overlayed nanotubes, display weak localization and energy quantization, indicating the formation of a quantum dot contacted to metallic nanowires by tunnel barriers.