Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T01:37:05.855Z Has data issue: false hasContentIssue false

Quantum Dots from Carbon Nanotube Junctions

Published online by Cambridge University Press:  01 February 2011

Fabrizio Cleri
Affiliation:
Ente Nuove Tecnologie, Energia e Ambiente (ENEA), Unità Materiali e Nuove Tecnologie, Centro Ricerche Casaccia, 00100 Roma A. D. (Italy)
Pawel Keblinski
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy12180–3590 (USA)
Inkook Jang
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville 32611–6400 (USA)
Susan B. Sinnott
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville 32611–6400 (USA)
Get access

Abstract

A tight-binding hamiltonian is used to study the electronic properties of covalently-bonded, crossed (5,5) metallic nanotubes with increasing degree of disorder in the junction region. At one extreme, ideal junctions between coplanar nanotubes with a minimal number of topological defects show a good ohmic behavior. Upon increasing disorder, ohmic conduction is suppressed in favor of hopping conductivity. At the opposite extreme, strongly disordered junctions as could be obtained after electron-beam irradiation of overlayed nanotubes, display weak localization and energy quantization, indicating the formation of a quantum dot contacted to metallic nanowires by tunnel barriers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tans, S. J., Verschueren, A. R. M., Dekker, C., Nature 393, 49 (1998).Google Scholar
2. Yao, Z., Postma, H. W. Ch., Balents, L., Dekker, C., Nature 402, 273 (1999)Google Scholar
3. Yoon, Y.-G., Mazzoni, M. S. C., Choi, H. J., Ihm, J., Louie, S. G., Phys. Rev. Lett. 86, 688 (2001).Google Scholar
4. Chiu, P. W., Duesberg, G. S., Dettlaff-Weglikowska, U., Roth, S., Appl. Phys. Lett. 80, 3811 (2002).Google Scholar
5. Fuhrer, M. S., Nygård, J., Shih, L., Forero, M., Yoon, Y.-G., Mazzoni, M. S. C., Choi, H. J., Ihm, J., Louie, S. G., Zettl, A., McEuen, P. L., Science 288, 494 (2000).Google Scholar
6. Rueckes, T., Kim, K., Joselevich, E., Tseng, G. Y., Cheung, C.-L., Lieber, C. M., Science 289, 94 (2000).Google Scholar
7. Postma, H. W. Ch., de Jonge, M., Yao, Z., Dekker, C., Phys. Rev. B 62, 10653 (2000).Google Scholar
8. Buldum, A., Lu, J. P., Phys. Rev. B 63, 161403 (2001).Google Scholar
9. de Pablo, P. J., Gómez-Navarro, C., Colchero, J., Serena, P. A., Gómez-Herrero, J., Bar, A. M.ó, Phys. Rev. Lett. 88, 036084 (2002)Google Scholar
10. Banhart, F., Nano Lett. 1, 329 (2001).Google Scholar
11. Terrones, M., Banhart, F., Grobert, N., Charlier, J.-C., Terrones, H., Ajayan, P. M., Phys. Rev. Lett. 89, 075505 (2002).Google Scholar
12. Xu, C. H., Wang, C.Z., Chan, C.T. and Ho, K.M., J. Phys. Cond. Matter 4 (1992) 6047 Google Scholar
13. Wei, B. Q., Vajtai, R., Jung, Y., Ward, J., Zhang, R., Ramanath, G., and Ajayan, P. M., Nature 416, 495 (2002).Google Scholar
14. Jang, I., Sinnot, S. B., Keblinski, P., in preparationGoogle Scholar
15. Cleri, F., Keblinski, P., Jang, I., Sinnot, S. B., Nano Lett. (submitted).Google Scholar