Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:32:44.568Z Has data issue: false hasContentIssue false

Quantum Dot Growth in the Si-Ge-C System Through Multi-Step Procedure

Published online by Cambridge University Press:  10 February 2011

Yutaka Wakayama
Affiliation:
Max-Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany, [email protected]
Gerhard Gerth
Affiliation:
Max-Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany, [email protected]
Peter Werner
Affiliation:
Max-Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany, [email protected]
Leonid V. Sokolov
Affiliation:
Institute of Semiconductor Physics, Russian Academy of Science, Siberian Branch Lavrentieva 13, 630090 Novosibirsk, Russia
Get access

Abstract

To fabricate nanometer-sized Ge dots on Si(100), we have investigated multi-step procedure, involving low temperature deposition of a Ge layer, a sub-monolayer C on a Ge wetting layer, a Ge top layer for three-dimensional (3D) dot formation and post-annealing. Effects of each procedure were discussed on the basis of an atomic force microscope study. 10nm-sized Ge dots with a high number density in the order of 1011 cm−2 were grown on the Si(100) substrate by combining each procedure and optimizing experimental conditions, such as deposition temperature, the C layer thickness and post-annealing temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kamins, T. I., Carr, E. C., Williams, R. S., and Rosner, S. J., J. Appl. Phys. 81, 211 (1997).Google Scholar
2 Goryll, M., Vescan, L., Schmidt, K., Mesters, S., and Lüh, H., Appl. Phys. Lett. 71, 410 (1997).Google Scholar
3 Medeiros-Ribeiro, G., Bratkovski, A. M., Kamins, T. I., Ohlberg, D. A. A., and Williams, R. S., Science, 279, 353 (1998).Google Scholar
4 Ross, F. M., Tersoff, J., and Tromp, R. M., Phys. Rev. Lett. 80, 984 (1998).Google Scholar
5 Wang, X., Jiang, Z., Zhu, H., Lu, F., Huang, D., Liu, X., Hu, C., Chen, Y., Zhu, Z., and Yao, T., Appl. Phys. Lett. 71, 3543 (1997).Google Scholar
6 Schmidt, O. G., Lange, C., Eberl, K., Kienzle, O., and Ernst, F., Appl. Phys. Lett. 71, 2340 (1997).Google Scholar
7 Leifeld, O., Mfiler, E., Grüzmacher, D., Müler, B., and Kern, K., Appl. Phys. Lett. 74, 994 Google Scholar
8 Capellini, G., Gaspare, L. Di, Evangelisti, F., and Palange, E., Appl. Phys. Lett. 70, 493 (1997).Google Scholar