Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T16:03:06.082Z Has data issue: false hasContentIssue false

Quantum Design of Active Semiconductor Materials for Targeted Wavelengths

Published online by Cambridge University Press:  01 February 2011

Jerome Moloney
Affiliation:
[email protected], Nonlinear Control Strategies, ., 3542 N Geronimo Ave, Tucson, AZ, 85705, United States, (520)-548-5786, (520)-888-5901
Joerg Hader
Affiliation:
[email protected], Nonlinear Control Strategies, 3542 N Geronimo Ave, Tucson, AZ, 85705, United States
Stephan W. Koch
Affiliation:
[email protected], University of Marburg, Physics Department, Renthof 5, Marburg, 35032, Germany
Get access

Abstract

Performance metrics of every class of semiconductor amplifier or laser system depend critically on semiconductor QW optical properties such as photoluminescence (PL), gain and recombination losses (radiative and nonradiative). Current practice in amplifier or laser design assumes phenomenological parameterized models for these critical optical properties and has to rely on experimental measurement to extract model fit parameters. In this tutorial, I will present an overview of a powerful and sophisticated first-principles quantum design approach that allows one to extract these critical optical properties without relying on prior experimental measurement. It will be shown that an end device L-I characteristic can be predicted with the only input being intrinsic background losses, extracted from cut-back experiments. We will show that textbook and literature models of semiconductor amplifiers and lasers are seriously flawed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Agrawal, G.A. and Dutta, N.K. Long-Wavelength Semiconductor Lasers, 2nd Ed., Van Nostrand Reinhold Co., New York (1986).Google Scholar
2. Hess, K. Advanced Theory of Semiconductor Devices, IEEE Press, New York (2000).Google Scholar
3.Crosslight software http://www.crosslight.com.Google Scholar
4.Rsoft software http://www.rsoftdesign.com.Google Scholar
5. Piprek, J. Semiconductor Optoelectronic Devices, Academic Press, San Diego (2003).Google Scholar
6. Piprek, J. (Ed.), Optoelectronic Devices, Springer Verlag (2005).Google Scholar
7. Hader, J. et al. , Opt. Letts. 31, 3300 (2006).Google Scholar
8. Moloney, J.V. Hader, J. and Koch, S.W. Lasers & Photonics Reviews, 1, 24 (2007).Google Scholar
9. Hader, J. Moloney, J.V. and Koch, S.W, “Temperature dependence of radiative and Auger losses in quantum well lasers”, Conference 6889 Physics and Simulation of Optoelectronic Devices Paper 6889-09.Google Scholar
10. Chow, W. and Koch, S.W. Semiconductor Laser Fundamentals, [Berlin, Heidelberg: Springer-Verlag] (1999).Google Scholar
11. Haug, H. and Koch, S.W. Quantum Theory of the Optical and Electronic Properties of Semiconductors, 4th Ed., World Scientific Singapore (2004).Google Scholar
12. Lindberg, M. and Koch, S.W. Phys. Rev. B 38, 3342 (1988).Google Scholar
13. Kira, M. and Koch, S.W. Prog. Quant. Electron., in print (2007).Google Scholar
14. Callaway, J. Quantum Theory of the Solid State, Part A, Academic Press, New York (1974).Google Scholar
15. Altarelli, M. p.12 in Heterojunctions and Semiconductor Superlattices, Eds. Allan, G. et al. , Springer Verlag, Berlin (1985).Google Scholar
16. Bastard, G. Wave Mechanics Applied to Semiconductor Heterostructures, Les Editiones des Physiques, Paris (1988).Google Scholar
17. Hughes, S. et al. , Solid State Comm. 100, 555 (1999).Google Scholar
18. Hader, J. et al. , IEEE Phot. Tech. Letts., 14, p762 (2002).Google Scholar
19. Yariv, A. Quantum Electronics, 2nd Ed., Wiley, New York (1975).Google Scholar
20. Thompson, G.H.B., Physics of Semiconductor Lasers, Wiley, New York (1980).Google Scholar
21. Zory, P.S. Quantum Well Lasers, Academic Press, San Diego (1993).Google Scholar
22. Coldren, L.A. and Corzine, S.W. Diode Lasers and Photonic Integrated Circuits, Wiley, New York (1995).Google Scholar
23. Chuang, S.L. Physics of Optoelectronic Devices, Wiley, New York (1995).Google Scholar
24. Hader, J. Moloney, J.V. Koch, S.W. IEEE J. Quantum Electron. 41 No. 10 (2005).Google Scholar
25. Kira, M. et al. , Prog. Quant. Electron. 23, 189 (1999).Google Scholar
26. Phillips, A.F. et al. , IEEE J. Sel. Top. Quant. Electron., 5, 401 (1999).Google Scholar
27. Kuznetsov, M. et al. , IEEE J. Sel. Topics Quantum Electron., 5, 561 (1999).Google Scholar
28. Chilla, J. et al. , Proc. SPIE Int. Soc. Optical Engineering, 5332, 143 (2004); Proc. SPIE 6451, 645109 (2007).Google Scholar
29. Lutgen, S. et al. , Appl. Phys. Lett., 82, 3620 (2003).Google Scholar
30. Hastie, J.E. et al. , IEEE Phot. Tech. Letts., 15, 894 (2003).Google Scholar
31. Hastie, J.E et al. , Opt. Express, 13, 77 (2005).Google Scholar
32. Lindberg, H. et al. , IEEE Phot. Tech. Letts., 16, 362 (2004).Google Scholar
33. Schulz, N. et al. , IEEE Phot. Tech. Letts., 18, 1070 (2006).Google Scholar
34. Chilla, J. et al. , Proc. SPIE (2001).Google Scholar
35. Zakharian, A.R. et al. , Appl. Phys. Lett., 83, pp. 13131315 (2003).Google Scholar
36. Zakharian, A.R. et al. , IEEE Photon. Technol. Lett. 17, 25112513 (2005).Google Scholar
37. Fan, Li et al. , Applied Physics Letters 88, pp.021105 (2006).Google Scholar
38. Kaneda, Yushi, et al. ,, IEEE Photonics Technology Letters, 18. 1795 (2006).Google Scholar
39. Fan, Li et al. , Applied Physics Letters, 88, 251117 (2006).Google Scholar
40. Fan, Li et al. , Appl. Phys. Lett., 90, 181124, (2007).Google Scholar
41. Fan, Li et al. , Appl. Phys. Lett. 91, 131114 (2007).Google Scholar
42. Balakrishnan, G. et al. , Lase 2008 Solid State Lasers XVII, Paper 6871–34.Google Scholar