Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:19:08.247Z Has data issue: false hasContentIssue false

A Quantitative Study of Void Nucleation Times in Passivated Aluminum Interconnects

Published online by Cambridge University Press:  10 February 2011

Jonathan C. Doan
Affiliation:
Materials Science and Engineering Department, Stanford University, Stanford, CA 94305
John C. Bravman
Affiliation:
Materials Science and Engineering Department, Stanford University, Stanford, CA 94305
Paul A. Flinn
Affiliation:
Materials Science and Engineering Department, Stanford University, Stanford, CA 94305
Thomas N. Marieb
Affiliation:
Components Research, Intel Corporation, Santa Clara, CA
Get access

Abstract

Accelerated electromigration tests were performed in a High Voltage SEM (HVSEM). These experiments were conducted on 10 identical, passivated Al interconnect test structures at a temperature of 237°C and a current density of 30mA/µm2. Simultaneous testing and observation of the entire structure allowed the void nucleation times to be measured. Two normal distributions fit the nucleation times. The second of these distributions coincides roughly with the distribution of failure times of the test structures. Fracture of the passivation is hypothesized as the mechanism that causes the concurrent late nucleation and failure processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Blech, I. A. and Meieran, E. S., Reliability and Maintainability Symposium, 243248 (1970).Google Scholar
2. Levine, E. and Kichter, J., Proceedings of the 22nd annual IEEE International Reliability Physics Symposium, 242249 (1984).Google Scholar
3. Besser, P. R., Madden, M. C., and Flinn, P. A., J. Appl. Phys. 72 (8), 3792–7 (1992).10.1063/1.352276Google Scholar
4. Marieb, T., Flinn, P., Bravman, J. C., Gardner, D., and Madden, M., J. Appl. Phys. 78 (2), 1026–32 (1995).Google Scholar
5. Shatzkes, M. and Lloyd, J. R., J. Appl. Phys. 59 (11), 38903893 (1986).Google Scholar
6. Nix, W. D. and Arzt, E., Metall. Trans. A 23A (7), 2007–13 (1992).Google Scholar
7. Korhonen, M. A. and Borgesen, P., J. Appl. Phys. 73 (8), 37903799 (1993).10.1063/1.354073Google Scholar
8. Kraft, O. and Arzt, E., Appl. Phys. Lett. 66 (16), 2063–5 (1995).10.1063/1.113903Google Scholar
9. Gleixner, R. J., Clemens, B. M., and Nix, W. D., J. Mater. Res. 12 (8), 20812090 (1997).10.1557/JMR.1997.0279Google Scholar
10. Lee, S., Doan, J., Bravman, J. C., Flinn, P. A., Marieb, T. N., and Ogawa, S., in Stress Induced Phenomena in Metallization(American Institue of Physics, Tokyo, Japan, 1997), Vol. 418, pp. 101106.Google Scholar
11. Follstaedt, D. M., Van Den Avyle, J. A., Romig, A. D. Jr., and Knapp, J. A., MRS Symp. Proc. 225, 225–30 (1991).10.1557/PROC-225-225Google Scholar
12. Madden, M. C., Abratowski, E. V., Marieb, T., and Flinn, P.A., MRS Symp. Proc. 265, 33–8 (1992).10.1557/PROC-265-33Google Scholar
13. Flinn, P. A., Lee, S., Doan, J., Marieb, T. N., Bravman, J. C., and Madden, M., in Stress Induced Phenomena in Metallization(American Institue of Physics, Tokyo, Japan, 1997), Vol. 418, pp. 250261.Google Scholar
14. Shapiro, S. S. and Wilk, M. B., Biometrika 52 (3), 591611 (1965).10.1093/biomet/52.3-4.591Google Scholar
15. Blech, I. A., J. Appl. Phys. 47 (4), 12031209 (1976).10.1063/1.322842Google Scholar
16. Lloyd, J. R. and Smith, P. M., J. Vac. Sci. Tech. A 1 (2, pt.1), 455–8 (1983).10.1116/1.571946Google Scholar
17. Lloyd, J. R., Smith, P. M., and Prokop, G. S., Thin Solid Films 93 (3-4), 385–95 (1982).10.1016/0040-6090(82)90144-4Google Scholar
18. Graas, C. D. and Ting, L. L., MRS Symp. Proc. 338, 429–34 (1994).10.1557/PROC-338-429Google Scholar