Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T15:26:26.250Z Has data issue: false hasContentIssue false

Quantitative Studies of Tetrahedral Bonding in Amorphous Carbon Films Using Ultraviolet Raman Spectroscopy

Published online by Cambridge University Press:  10 February 2011

K. W. R. Gilkes
Affiliation:
School of Physics, University of East Anglia, Norwich NR4 7TJ, UK, [email protected]
S. Prawer
Affiliation:
School of Physics, University of Melbourne, Parkville, VIC 3052, Australia
J. Robertson
Affiliation:
Engineering Department, Trumpington Street, Cambridge CB2 1PZ, UK
H. S. Sands
Affiliation:
Department of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
Get access

Abstract

The bonding in a series of unhydrogenated amorphous carbon films has been analysed quantitatively using Raman spectroscopy with ultraviolet excitation. The Raman spectra exhibit two broad Raman peaks at 1650 cm−1 and 1100 cm−1, due to sp2 and sp3 vibrational modes respectively. The former is a resonance feature associated with a large proportion of paired sp2 sites, while the latter is a weighted vibrational density-of-states for the distorted random network of sp3 sites. The position and relative intensity of the two peaks are shown to be strongly correlated with the percentage of sp3 sites in the films, providing a reliable measure of sp3 bonding which is both quantitative and non-destructive.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Robertson, J., Adv. Phys. 35, 317 (1986)Google Scholar
2. Berger, S. D., McKenzie, D. R. and Martin, P. J., Phil. Mag. Lett. 57, 285 (1988)Google Scholar
3. Maley, N., Beeman, D. and Lannin, J. S., Phys. Rev. B, 38, 10 611 (1988)Google Scholar
4. Tamor, M. A. and Vassell, W. C., J. Appl. Phys. 76, 3823 (1994)Google Scholar
5. Wada, N. and Solin, S. A., Physica B 105, 353 (1981)Google Scholar
6. Nemanich, R. J., Glass, J. T., Lucovsky, G. and Scroder, R. E., J. Vac. Sci. Tech. A 6, 1783 (1988)Google Scholar
7. Ramsteiner, M. and Wagner, J., Appl. Phys. Lett. 51, 1355 (1987)Google Scholar
8. Yoshikawa, M., Nagai, N., Matsuki, M., Fukada, H., Katagiri, G., Ishida, H., Ishitani, A. and Nagai, I., Phys. Rev. B, 46, 7169 (1992)Google Scholar
9. Tamor, M., Haire, J. A., Wu, C. H. and Hass, K. C., Appl. Phys. Lett. 54, 123 (1989)Google Scholar
10. Bacsa, W. S., Lannin, J. S., Pappas, D. L. and Cuomo, J. J., Phys. Rev. B 47, 10 931 (1993)Google Scholar
11. Prawer, S., Nugent, K. W., Lifshitz, Y., Lempert, G. D., Grossman, E., Kulik, J., Avigal, I. and Kalish, R., Diamond Rel. Mater. 5, 433 (1996)Google Scholar
12. Gilkes, et al, Appl. Phys. Lett. 70, 1980 (1997)Google Scholar
13. Merkulov, et al., Phys. Rev. Lett. 78, 4869 (1997)Google Scholar
14. McKenzie, D. R., Muller, D. and Pailthorpe, B. A., Phys. Rev. Lett. 67, 773 (1991)Google Scholar
15. Falion, P., Veerasamy, V. S., Davis, C. A., Robertson, J., Amaratunga, G. A. J., Milne, W. I. and Koskinen, J., Phys. Rev. B 48, 4777 (1993)Google Scholar
16. Xu, S., Tay, B. K., Tan, H. S., Zhong, Li, Tu, Y. Q., Silva, S. R. P. and Milne, W. I., J. Appl. Phys. 79, 7239 (1996)Google Scholar
17. Lifshitz, Y., Lempert, G. D., Rotter, S., Avigal, I., Uzan-Saguy, C. and Kalish, R., Diamond Rel. Mater. 2, 285 (1993)Google Scholar
18. Wang, C. Z., Ho, K. M. and Chan, C. T., Phys. Rev. Lett. 71, 1184 (1993)Google Scholar
19. Drabold, D. A., Fedders, P. A. and Stumm, P., Phys. Rev. B 49, 16 416 (1994)Google Scholar
20. Beeman, D., Silverman, J., Lynds, R. and Anderson, M. R., Phys. Rev. B 30, 870 (1984)Google Scholar